Mostrar el registro sencillo del ítem

dc.contributor.authorDerin, Y.
dc.contributor.authorAnagnostou, E.
dc.contributor.authorBerne, A.
dc.contributor.authorBorga, M.
dc.contributor.authorBoudevillain, Brice
dc.contributor.authorBuytaert, W.
dc.contributor.authorChang, Che-Haoen_US
dc.contributor.authorChen, H.en_US
dc.contributor.authorDelrieu, Gen_US
dc.contributor.authorLavado-Casimiro, W.en_US
dc.contributor.authorManz, B.
dc.contributor.authorMoges, S.
dc.contributor.authorNikolopoulos, Efthymios I.
dc.contributor.authorSahlu, Dejene
dc.contributor.authorSalerno, Franco
dc.contributor.authorRodríguez-Sánchez, Juan-Pablo
dc.contributor.authorVergara, Humberto J.
dc.contributor.authorYilmaz, K.K.
dc.date.accessioned2019-07-27T20:07:21Z
dc.date.available2019-07-27T20:07:21Z
dc.date.issued2019-12-7
dc.identifier.urihttps://hdl.handle.net/20.500.12542/88
dc.description.abstractThe great success of the Tropical Rainfall Measuring Mission (TRMM) and its successor Global Precipitation Measurement (GPM) has accelerated the development of global high-resolution satellite-based precipitation products (SPP). However, the quantitative accuracy of SPPs has to be evaluated before using these datasets in water resource applications. This study evaluates the following GPM-era and TRMM-era SPPs based on two years (2014–2015) of reference daily precipitation data from rain gauge networks in ten mountainous regions: Integrated Multi-SatellitE Retrievals for GPM (IMERG, version 05B and version 06B), National Oceanic and Atmospheric Administration (NOAA)/Climate Prediction Center Morphing Method (CMORPH), Global Satellite Mapping of Precipitation (GSMaP), and Multi-Source Weighted-Ensemble Precipitation (MSWEP), which represents a global precipitation data-blending product. The evaluation is performed at daily and annual temporal scales, and at 0.1 deg grid resolution. It is shown that GSMaPV07 surpass the performance of IMERGV06B Final for almost all regions in terms of systematic and random error metrics. The new orographic rainfall classification in the GSMaPV07 algorithm is able to improve the detection of orographic rainfall, the rainfall amounts, and error metrics. Moreover, IMERGV05B showed significantly better performance, capturing the lighter and heavier precipitation values compared to IMERGV06B for almost all regions due to changes conducted to the morphing, where motion vectors are derived using total column water vapor for IMERGV06B.en_US
dc.formatapplication/pdf
dc.language.isoengen_US
dc.publisherMDPIen_US
dc.relation.ispartofurn:issn:2072-4292
dc.rightsinfo:eu-repo/semantics/openAccesses_PE
dc.rightsAttribution-NonCommercial-ShareAlike 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/us/*
dc.sourceServicio Nacional de Meteorología e Hidrología del Perúes_PE
dc.sourceRepositorio Institucional - SENAMHIes_PE
dc.subjectHidrología
dc.subjectPrecipitación
dc.subjectSistema Solar
dc.subjectLluviaen_US
dc.titleEvaluation of GPM-era Global Satellite Precipitation Products over Multiple Complex Terrain Regionsen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.identifier.isni0000 0001 0746 0446
dc.description.peerreviewPor pares
dc.identifier.doihttps://doi.org/10.3390/rs11242936
dc.identifier.journalRemote Sensing
dc.source.volume2936es_PE
dc.source.issue11es_PE
dc.source.journalRemote Senses_PE
dc.subject.siniaprecipitacion - Clima y Eventos Naturales
dc.type.siniatext/publicacion cientifica
dc.identifier.urlhttps://hdl.handle.net/20.500.12542/88
dc.identifier.urlhttps://hdl.handle.net/20.500.12542/88
dc.identifier.urlhttps://hdl.handle.net/20.500.12542/88


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(es)

Mostrar el registro sencillo del ítem

info:eu-repo/semantics/openAccess
Excepto si se señala otra cosa, la licencia del ítem se describe como info:eu-repo/semantics/openAccess