Show simple item record

dc.contributor.authorYoshikawa, Kenji
dc.contributor.authorÚbeda, Jose
dc.contributor.authorMasías, Pablo
dc.contributor.authorVasquez, Pool
dc.contributor.authorCcallata, Beto
dc.contributor.authorConcha, Ronald
dc.contributor.authorLuna, Gonzalo
dc.contributor.authorIparraguirre, Joshua
dc.contributor.authorRamos, Isabel
dc.contributor.authorDe la Cruz, Gustavo
dc.contributor.authorCruz, Rolando
dc.contributor.authorPellitero, Ramón
dc.contributor.authorBonshoms, Marti
dc.date.accessioned2020-07-28T02:34:58Z
dc.date.available2020-07-28T02:34:58Z
dc.date.issued2020-05-19
dc.identifier.urihttps://hdl.handle.net/20.500.12542/429
dc.description.abstractTropical high‐mountain permafrost has a unique thermal regime due to its exposure to strong solar radiation and to rough surface snow morphology, which reduce ground heat transfer from the surface. Latent heat transfer and higher albedo that occur during the snow‐covered season contribute to positive feedback that supports the presence of permafrost. This preliminary study reports on the thermal state characteristics of tropical mountain permafrost in Peru. This work also evaluates the potential combined impact of the El Niño–Southern Oscillation (ENSO) in the mountain permafrost of the Coropuna and Chachani volcanic complexes, both located at the western edge of the southern Peruvian Altiplano. Temperature monitoring boreholes were established at 5,217 m at Coropuna and 5,331 m at Chachani, and electrical resistivity was surveyed in both sites. This 7‐year discontinuous record of permafrost temperature data encompasses historically extreme El Niño/La Niña events. Our results show that the current lower‐altitude permafrost boundary (~5,100 m a.s.l.) is critically influenced by the balance of wet and dry seasons: permafrost tends to deplete during drought years. Typical permafrost thickness was 10–20 m and contained ice‐rich pore spaces. The presence of permafrost and its thermal resistance depends on ice content and on higher albedo, usually due to: (a) hydrothermal alteration, which transforms the volcanic rocks into surfaces with ideal albedo for permafrost resilience; and (b) sublimation of the snow cover, forming ice‐pinnacles named penitentes.en_US
dc.language.isoengen_US
dc.publisher John Wiley and Sons en_US
dc.relation.ispartofurn:issn1099-1530
dc.rightsinfo:eu-repo/semantics/embargoedAccessen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.sourceRepositorio Institucional - SENAMHIen_US
dc.sourceServicio Nacional de Meteorología e Hidrología del Perúen_US
dc.sourceAltiplano
dc.sourceAndes
dc.subjectENSOen_US
dc.subjectTemperaturaen_US
dc.titleCurrent thermal state of permafrost in the southern Peruvian Andes and potential impact from El Niño–Southern Oscillation (ENSO)en_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.identifier.isni0000 0001 0746 0446
dc.description.peerreviewPor pares
dc.identifier.doihttps://doi.org/10.1002/ppp.2064
dc.identifier.journalPermafrost and Periglacial Processesen_US
dc.subject.ocdehttps://purl.org/pe-repo/ocde/ford#1.05.10
dc.subject.siniafenomeno El Niño - Clima y Eventos Naturales
dc.type.siniatext/publicacion cientifica
dc.identifier.urlhttps://hdl.handle.net/20.500.12542/429


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

info:eu-repo/semantics/embargoedAccess
Except where otherwise noted, this item's license is described as info:eu-repo/semantics/embargoedAccess