Show simple item record

dc.contributor.authorGubler, S.
dc.contributor.authorSedlmeier, K.
dc.contributor.authorBhend, J.
dc.contributor.authorAvalos, Grinia
dc.contributor.authorCoelho, C.A.S.
dc.contributor.authorEscajadillo Fernandez, Yury
dc.contributor.authorJacques-Coper, M.
dc.contributor.authorMartinez, R.
dc.contributor.authorSchwierz, C.
dc.contributor.authorDe Skansi, M.
dc.contributor.authorSpirig, C.
dc.date.accessioned2020-07-28T01:51:56Z
dc.date.available2020-07-28T01:51:56Z
dc.date.issued2020-03-11
dc.identifier.urihttps://hdl.handle.net/20.500.12542/424
dc.description.abstractSeasonal predictions have a great socioeconomic potential if they are reliable and skillful. In this study, we assess the prediction performance of SEAS5, version 5 of the seasonal prediction system of the European Centre for Medium-Range Weather Forecasts (ECMWF), over South America against homogenized station data. For temperature, we find the highest prediction performances in the tropics during austral summer, where the probability that the predictions correctly discriminate different observed outcomes is 70%. In regions lying to the east of the Andes, the predictions of maximum and minimum temperature still exhibit considerable performance, while farther to the south in Chile and Argentina the temperature prediction performance is low. Generally, the prediction performance of minimum temperature is slightly lower than for maximum temperature. The prediction performance of precipitation is generally lower and spatially and temporally more variable than for temperature. The highest prediction performance is observed at the coast and over the highlands of Colombia and Ecuador, over the northeastern part of Brazil, and over an isolated region to the north of Uruguay during DJF. In general, Niño-3.4 has a strong influence on both air temperature and precipitation in the regions where ECMWF SEAS5 shows high performance, in some regions through teleconnections (e.g., to the north of Uruguay). However, we show that SEAS5 outperforms a simple empirical prediction based on Niño-3.4 in most regions where the prediction performance of the dynamical model is high, thereby supporting the potential benefit of using a dynamical model instead of statistical relationships for predictions at the seasonal scaleen_US
dc.formatapplication/pdf
dc.language.isoengen_US
dc.publisherAmerican Meteorological Societyen_US
dc.relation.ispartofurn:issn:1520-0434
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Estados Unidos de América*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.sourceRepositorio Institucional - SENAMHI
dc.sourceServicio Nacional de Meteorología e Hidrología del Perú
dc.subjectClimatología
dc.subjectSouth Americaen_US
dc.subjectPrecipitación
dc.subjectPronóstico
dc.titleAssessment of ECMWF SEAS5 seasonal forecast performance over South Americaen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.identifier.isni0000 0001 0746 0446en_US
dc.description.peerreviewPor pares
dc.identifier.doihttps://doi.org/10.1175/WAF-D-19-0106.1
dc.identifier.journalWeather and Forecastingen_US
dc.subject.siniaprecipitacion - Clima y Eventos Naturales
dc.type.siniatext/publicacion cientifica
dc.identifier.urlhttps://hdl.handle.net/20.500.12542/424


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

info:eu-repo/semantics/openAccess
Except where otherwise noted, this item's license is described as info:eu-repo/semantics/openAccess