dc.contributor.author | Huerta, Adrian | |
dc.contributor.author | Aybar, Cesar | |
dc.contributor.author | Correa, Kris | |
dc.contributor.author | Noemi, Imfeld | |
dc.contributor.author | Felipe-Obando, Oscar | |
dc.contributor.author | Rau, Pedro | |
dc.contributor.author | Drenkhan, Fabian | |
dc.date.accessioned | 2023-12-28T23:23:50Z | |
dc.date.available | 2023-12-28T23:23:50Z | |
dc.date.issued | 2023 | |
dc.identifier.citation | Huerta, A., Aybar, C., Imfeld, N. et al. High-resolution grids of daily air temperature for Peru - the new PISCOt v1.2 dataset. Sci Data 10, 847 (2023). https://doi.org/10.1038/s41597-023-02777-w | es_PE |
dc.identifier.uri | https://hdl.handle.net/20.500.12542/3050 | |
dc.description.abstract | Gridded high-resolution climate datasets are increasingly important for a wide range of modelling applications. Here we present PISCOt (v1.2), a novel high spatial resolution (0.01°) dataset of daily air temperature for entire Peru (1981–2020). The dataset development involves four main steps: (i) quality control; (ii) gap-filling; (iii) homogenisation of weather stations, and (iv) spatial interpolation using additional data, a revised calculation sequence and an enhanced version control. This improved methodological framework enables capturing complex spatial variability of maximum and minimum air temperature at a more accurate scale compared to other existing datasets (e.g. PISCOt v1.1, ERA5-Land, TerraClimate, CHIRTS). PISCOt performs well with mean absolute errors of 1.4 °C and 1.2 °C for maximum and minimum air temperature, respectively. For the first time, PISCOt v1.2 adequately captures complex climatology at high spatiotemporal resolution and therefore provides a substantial improvement for numerous applications at local-regional level. This is particularly useful in view of data scarcity and urgently needed model-based decision making for climate change, water balance and ecosystem assessment studies in Peru. | es_PE |
dc.format | application/pdf | es_PE |
dc.language.iso | spa | es_PE |
dc.publisher | Nature | es_PE |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (CC BY-NC-ND) | es_PE |
dc.rights | info:eu-repo/semantics/openAccess | es_PE |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | es_PE |
dc.source | Repositorio Institucional - SENAMHI | es_PE |
dc.source | Servicio Nacional de Meteorología e Hidrología del Perú | es_PE |
dc.subject | Climate Change | es_PE |
dc.subject | Ecosystem | es_PE |
dc.title | High-resolution grids of daily air temperature for Peru - the new PISCOt v1.2 dataset | es_PE |
dc.type | info:eu-repo/semantics/article | es_PE |
dc.identifier.doi | https://doi.org/10.1038/s41597-023-02777-w | |
dc.identifier.journal | Scientific Data | es_PE |
dc.subject.ocde | https://purl.org/pe-repo/ocde/ford#1.05.09 | es_PE |
dc.publisher.country | PE | es_PE |
dc.subject.sinia | ecosistemas de transicion - Biodiversidad y Ecosistemas | es_PE |
dc.type.sinia | text/publicacion cientifica | es_PE |
dc.identifier.url | https://hdl.handle.net/20.500.12542/3050 | |