Mostrar el registro sencillo del ítem

dc.contributor.authorLujano Laura, Efrain
dc.contributor.authorLujano, Rene
dc.contributor.authorHuamani, Juan Carlos
dc.contributor.authorLujano, Apolinario
dc.coverage.spatialRío Ramis
dc.date.accessioned2023-12-11T21:47:03Z
dc.date.available2023-12-11T21:47:03Z
dc.date.issued2023
dc.identifier.urihttps://hdl.handle.net/20.500.12542/3019
dc.description.abstractThe forecast of river stream flows is of significant importance for the development of early warning systems. Artificial intelligence algorithms have proven to be an effective tool in hydrological modeling data-driven, since they allow establishing relationships between input and output data of a watershed and thus make decisions data-driven. This article investigates the applicability of the k-nearest neighbor (KNN) algorithm for forecasting the mean daily flows of the Ramis river, at the Ramis hydrometric station. As input to the KNN machine learning algorithm, we used a data set of mean basin precipitation and mean daily flow from hydrometeorological stations with various lags. The performance of the KNN algorithm was quantitatively evaluated with hydrological ability metrics such as mean absolute percentage error (MAPE), anomaly correlation coefficient (ACC), Nash-Sutcliffe efficiency (NSE), Kling-Gupta efficiency (KGE') and the spectral angle (SA). The results for forecasting the flows of the Ramis river with the k-nearest neighbor machine learning algorithm reached high levels of reliability with flow lags of one and two days and precipitation with three days. The algorithm used is simple but robust to make short-term flow forecasts and can be integrated as an alternative to strengthen the daily hydrological forecast of the Ramis river.es_PE
dc.formatapplication/pdfes_PE
dc.language.isospaes_PE
dc.publisherInstituto Mexicano de Tecnología del Aguaes_PE
dc.relation.urihttps://www.revistatyca.org.mx/index.php/tyca/article/view/2851es_PE
dc.rightsinfo:eu-repo/semantics/openAccesses_PE
dc.sourceRepositorio Institucional - SENAMHIes_PE
dc.sourceServicio Nacional de Meteorología e Hidrología del Perúes_PE
dc.subjectInundacioneses_PE
dc.subjectCaudaleses_PE
dc.subjectModelamiento Hidrológicoes_PE
dc.subjectCaudaleses_PE
dc.titleHydrological modeling based on the KNN algorithm: An application for the forecast of daily flows of the Ramis river, Perues_PE
dc.title.alternativeModelado hidrológico basado en el algoritmo KNN una aplicación para el pronóstico de caudales diarios del río Ramis, Perúes_PE
dc.typeinfo:eu-repo/semantics/articlees_PE
dc.identifier.doihttps://doi.org/10.24850/j-tyca-14-02-05
dc.identifier.journalTecnología y ciencias del aguaes_PE
dc.subject.ocdehttps://purl.org/pe-repo/ocde/ford#1.05.11es_PE
dc.publisher.countryPEes_PE
dc.subject.siniaconservacion y recuperacion de cuencas hidrograficas - Aguaes_PE
dc.type.siniatext/publicacion cientificaes_PE
dc.identifier.urlhttps://hdl.handle.net/20.500.12542/3019
dc.identifier.urlhttps://hdl.handle.net/20.500.12542/3019


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(es)

Mostrar el registro sencillo del ítem