Mostrar el registro sencillo del ítem
Snow-Hydrological modeling using remote sensing data in Vilcanota basin
dc.contributor.author | Risco Sence, Eber | |
dc.contributor.author | Lavado-Casimiro, W. | |
dc.contributor.author | Rau, Pedro | |
dc.date.accessioned | 2021-06-30T19:39:52Z | |
dc.date.available | 2021-06-30T19:39:52Z | |
dc.date.issued | 2020 | |
dc.identifier.citation | Risco, E., Lavado, W., and Rau, P. (2020) Snow-Hydrological modeling using remote sensing data in Vilcanota basin, Peru, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11515, https://doi.org/10.5194/egusphere-egu2020-11515 | es_PE |
dc.identifier.uri | https://hdl.handle.net/20.500.12542/1022 | |
dc.description.abstract | Water resources availability in the southern Andes of Peru is being affected by glacier and snow retreat. This problem is already perceived in the Vilcanota river basin, where hydro-climatological information is scarce. In this particular mountain context, any water plan represents a great challenge. To cope with these limitations, we propose to assess the space-time consistency of 10 satellite-based precipitation products (CMORPH–CRT v.1, CMORPH–BLD v.1, CHIRP v.2, CHIRPS v.2, GSMaP v.6, GSMaP correction, MSWEP v.2.1, PERSIANN, PERSIANN–CDR, TRMM 3B42) with 25 rain gauge stations in order to select the best product that represents the variability in the Vilcanota basin. For this purpose, through a direct evaluation of sensitivity analysis via the GR4J parsimonious hydrological model over the basin. GSMap v.6, TRMM 3B42 and CHIRPS were selected to represent rainfall spatial variability according with different statistical criteria, such as correlation coefficient (CC), standard deviation (SD), percentage of bias (%B) and centered mean square error (CRMSE). To facilitate the interpretation of statistical results, Taylor's diagram was used to represent the CC statistics, normalized values of SD and CRMSE. | es_PE |
dc.format | application/pdf | es_PE |
dc.language.iso | eng | es_PE |
dc.publisher | European Geosciences Union | es_PE |
dc.relation.uri | https://meetingorganizer.copernicus.org/EGU2020/EGU2020-11515.html | es_PE |
dc.rights | info:eu-repo/semantics/openAccess | es_PE |
dc.rights | Atribución-NoComercial-SinDerivadas 3.0 Estados Unidos de América | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/us/ | * |
dc.source | Repositorio Institucional - SENAMHI | es_PE |
dc.source | Servicio Nacional de Meteorología e Hidrología del Perú | es_PE |
dc.subject | Recursos Hídricos | es_PE |
dc.subject | Glaciares | es_PE |
dc.subject | Nieve | es_PE |
dc.subject | Cuencas | es_PE |
dc.subject | Modelos y Simulación | es_PE |
dc.title | Snow-Hydrological modeling using remote sensing data in Vilcanota basin | es_PE |
dc.type | info:eu-repo/semantics/conferenceObject | es_PE |
dc.identifier.doi | https://doi.org/10.5194/egusphere-egu2020-11515 | |
dc.subject.ocde | https://purl.org/pe-repo/ocde/ford#1.05.11 | es_PE |
dc.subject.sinia | variabilidad climatica - Clima y Eventos Naturales | |
dc.type.sinia | text/libro.presentacion | |
dc.identifier.url | https://hdl.handle.net/20.500.12542/1022 | |
dc.identifier.url | https://hdl.handle.net/20.500.12542/1022 |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(es)
-
Congreso [32]