Mostrar el registro sencillo del ítem

dc.contributor.authorAsurza Véliz, Flavio Alexander
dc.contributor.authorTraverso-Yucra, Kevin Arnold
dc.contributor.authorLavado-Casimiro, W.
dc.contributor.authorFelipe-Obando, Oscar
dc.contributor.authorMontesinos Cáceres, Cristian Albert
dc.contributor.authorLlauca, Harold
dc.date.accessioned2021-06-30T15:26:17Z
dc.date.available2021-06-30T15:26:17Z
dc.date.issued2020
dc.identifier.citationAsurza Véliz, F. A., Traverso-Yucra, K. A., Lavado-Casimiro, W. S., Felipe-Obando, O., Montesinos-Cáceres, C. A., and Llauca-Soto, H. O. (2020). Surface water resources assessment in Peru through SWAT hydrological model, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6308, https://doi.org/10.5194/egusphere-egu2020-6308es_PE
dc.identifier.urihttps://hdl.handle.net/20.500.12542/1017
dc.description.abstractSurface water resources in Peru show high spatio-temporal variability, being the prediction of streamflow at ungauged sites, one of the fundamental challenges today. This research presents a methodology for regional parameter estimation at national scale using SWAT (Soil and Water Assessment Tools) model, with the goal of estimating the streamflow for three hydrographic regions in Peru: the Pacific, Titicaca and Amazonas. Hydrological models were calibrated using observed discharge data which is sparse and poorly distributed over Peru. In this context, we design a regional parameter estimation following the next steps: i) First, a regionalization of 3394 hydrological response units (HRU) in the whole country were built through Ward’s hierarchical cluster criterion, in which 14 calibration regions were defined. ii) A calibration procedure to obtain the best calibration parameters was made with Non-dominated Sorting Genetic Algorithm (NSGA-II) optimization using the Kling-Gupta (KGE) and Nash Sutcliffe Logarithmic (LogNSE) statistics. A total of 31 hydrological stations were selected to calibration and validation procedure with the condition of leaving at least one in each region defined at point i) iii) Using the physical similarity approach, each set of calibrated parameters was averaged in each region to get the regional parameter sets.es_PE
dc.formatapplication/pdfes_PE
dc.language.isoenges_PE
dc.publisherEuropean Geosciences Uniones_PE
dc.relation.urihttps://meetingorganizer.copernicus.org/EGU2020/EGU2020-6308.htmles_PE
dc.rightsinfo:eu-repo/semantics/openAccesses_PE
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Estados Unidos de América*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.sourceRepositorio Institucional - SENAMHIes_PE
dc.sourceServicio Nacional de Meteorología e Hidrología del Perúes_PE
dc.subjectHydrological Modeles_PE
dc.subjectModelos y Simulaciónes_PE
dc.subjectSWAT Modeles_PE
dc.subjectCaudales_PE
dc.subjectCuenca Hidrográficaes_PE
dc.subjectCuencas
dc.titleSurface water resources assessment in Peru through SWAT hydrological modeles_PE
dc.typeinfo:eu-repo/semantics/conferenceObjectes_PE
dc.identifier.doihttps://doi.org/10.5194/egusphere-egu2020-6308
dc.subject.ocdehttps://purl.org/pe-repo/ocde/ford#1.05.11es_PE
dc.subject.siniagestion de recursos hidricos de cuenca - Agua
dc.type.siniatext/libro.presentacion
dc.identifier.urlhttps://hdl.handle.net/20.500.12542/1017


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(es)

Mostrar el registro sencillo del ítem

info:eu-repo/semantics/openAccess
Excepto si se señala otra cosa, la licencia del ítem se describe como info:eu-repo/semantics/openAccess