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Abstract

We investigate the possible causes for inter-model spread in tropical zonal-mean precipitation pattern, which is divided into
hemispherically symmetric and anti-symmetric modes via empirical orthogonal function analysis. The symmetric pattern
characterizes the leading mode and is tightly related to the seasonal amplitude of maximum precipitation position. The
energetic constraints link the symmetric pattern to the seasonal amplitude in cross-equatorial atmospheric energy transport
AET and the annual-mean equatorial net energy input NEI,,. Decomposition of AET,, into the energetics variables indicates
that the inter-model spread in symmetric precipitation pattern is correlated with the inter-model spread in clear-sky atmos-
pheric shortwave absorption, which most likely arises due to differences in radiative transfer parameterizations rather than
water vapor patterns. Among the components that consist NEI,,, the inter-model spread in symmetric precipitation pattern is
mostly associated with the inter-model spread in net surface energy flux in the equatorial region, which is modulated by the
strength of cooling by equatorial upwelling. Our results provide clues to understand the mechanism of tropical precipitation
bias, thereby providing guidance for model improvements.

Keywords Tropical precipitation - Model uncertainty - Double ITCZ problem - Energetic constraints - Cold tongue bias -
Atmospheric shortwave absorption

1 Introduction

Most of the state-of-the-art coupled general circulation mod-
els (CGCM) overestimate precipitation south of the equator
and underestimate it near the equator: this bias is termed as
the double intertropical convergence zone (ITCZ) problem
(Mechoso et al. 1995; Lin 2007). Despite steady improve-
ments in resolution and model parameterizations, the double
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ITCZ problem has been persistent in CGCMs across genera-
tions of climate models (Zhang et al. 2015). This model bias
in tropical precipitation has various climatic consequences.
For example, Ham and Kug (2014) showed that the climate
models with excessive precipitation over the central/eastern
Pacific ITCZ tend to simulate a slower phase transition of
the El Nifio-Southern Oscillation; Tian (2015) found that the
double ITCZ bias is negatively correlated with the degree
of global surface warming following a doubling of CO,,
namely equilibrium climate sensitivity; Zhou and Xie (2015)
demonstrated that the projected tropical climate change is
sensitive to the double ITCZ bias in the mean state. Thus,
identifying the possible causes of the double ITCZ bias is
of critical importance not only to correctly simulate the cur-
rent climate state but also for a more reliable future climate
projection.

Previous studies attribute the double ITCZ bias to
local processes such as poor representation of tropical
ocean-atmosphere feedback (Lin 2007; Li and Xie 2014),
improper entrainment rate (Hirota et al. 2011), biased sea
surface temperature (SST) threshold for onset of convec-
tion (Bellucci et al. 2010; Oueslati and Bellon 2015), inap-
propriate wind strength in the eastern Pacific and coastal
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regions (de Szoeke and Xie 2008; Zheng et al. 2011), and
convection scheme (Song and Zhang 2018). The recently
developed framework that links the ITCZ position to the
inter-hemispheric atmospheric energy contrast (Broccoli
et al. 2006; Kang et al. 2008; Schneider et al. 2014; Kang
2020) has led a line of research to look for possible causes
of the double ITCZ problem from biases in the atmospheric
energy budget. The energetic framework provides different
mechanisms for hemispherically anti-symmetric tropical
precipitation biases—characterized by the precipitation
difference between the tropics in the Northern Hemisphere
(NH) and Southern Hemisphere (SH)—and hemispherically
symmetric tropical precipitation biases—characterized by
the meridional width of the intense equatorial precipitation.

In particular, hemispherically symmetric biases in tropi-
cal precipitation have been linked to the biases in the equa-
torial net energy input (NEI) into the atmospheric column:
a larger NEI| is associated with more equatorial precipita-
tion and vice versa (Adam et al. 2017). The NEI, biases
in turn have been related to the cold tongue biases over
the eastern equatorial Pacific. In contrast, hemispherically
anti-symmetric biases in tropical precipitation have been
linked to biases in the cross-equatorial atmospheric energy
transport (Adam et al. 2016b). For example, the lack of
clouds over the Southern Ocean can result in anomalously
northward atmospheric energy transport across the equator
that is accompanied by excessive precipitation south of the
equator, and hence the Southern Ocean cloud bias has been
suggested to contribute to hemispherically anti-symmetric
biases in tropical precipitation (Hwang and Frierson 2013).
However, the degree to which a Southern Ocean cloud bias
correction in CGCMs improves the tropical precipitation
bias turns out to be highly model dependent (Kay et al. 2016;
Mechoso et al. 1995; Hawcroft et al. 2017). Causes for the
inter-model diversity will be investigated within the recently
initiated Extratropical-Tropical Interaction Model Intercom-
parison Project, namely ETIN-MIP (Kang et al. 2019). In
fact, more recent studies have found that hemispherically
anti-symmetric biases in tropical precipitation are not sig-
nificantly correlated with extratropical energetic biases but
tightly linked to the tropical net surface energy biases (Xiang
et al. 2017), which can be traced to land surface temperature
biases (Zhou and Xie 2017).

The tropical precipitation biases can be characterized in
a number of different ways. The most common measure is
the southern ITCZ index, which is the climatological mean
precipitation bias over the southeastern Pacific (Bellucci et al.
2010). Another frequently used measure for quantifying the
hemispherically anti-symmetric component of the zonal-mean
tropical precipitation is the precipitation asymmetry index
(PAI), which is the precipitation difference between northern
(0°-20° N) and southern tropics (20° S—0°) normalized by the
tropical-mean (20° S-20° N) (Hwang and Frierson 2013). The
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hemispherically symmetric component is quantified by the
equatorial precipitation index (E,), which is the equatorial (2°
S—2° N) precipitation divided by the tropical-mean (20° S-20°
N) subtracted from unity (Adam et al. 2016b). Because each
index characterizes distinct aspects of the tropical precipitation
pattern, it is difficult to reconcile how they each contribute to
the behavior of the overall tropical precipitation pattern.

In this study, we characterize the tropical precipitation
distribution in a more objective manner based on an inter-
model Empirical Orthogonal Function (EOF) analysis of
zonal-mean tropical precipitation. The inter-model spread
of zonal-mean tropical precipitation is largely divided into
the two components, which respectively characterize the
meridional width and hemispheric contrast of tropical pre-
cipitation. Independence of the two components indicates
they may be governed by distinct mechanisms. We proceed
to identify the leading pattern of inter-model spread and
investigate its source based on the energetic constraints.

2 Methodology and data
2.1 Energetic constraints on the ITCZ position

The ITCZ is associated with a low-level wind convergence
and an upper-level wind divergence, coinciding with the
ascending branch of the Hadley Circulation (HC). Provided
that the HC ascending branch is vertically straight and that
eddy fluxes contribute little to energy transport, the zonal-
mean ITCZ location is associated with the so-called “energy
flux equator” (EFE) where the atmospheric energy trans-
port vanishes (Kang et al. 2008, 2009; Donohoe et al. 2013;
Adam et al. 2016a).

The vertically integrated moist static energy transport
in the atmosphere (AET) can be linked to net energy input
(NEI) into the atmospheric column (Neelin and Held 1987)
via the atmospheric energy budget:

P,
V-AET:NEI—i/ (CpT+LVq)£ (1
dt 0 8

1 1 1

! - LWNET,TOA + SHSFC + LHgpc
NETsre T LWNET’SFC is the sum of vertical energy fluxes
from the top-of-atmosphere (TOA) and the surface. The
TOA energy fluxes consist of net downward shortwave flux
] . 1 .
(SWNET’TO ) minus net upward longwave flux (LWNET’TO A
the surface energy fluxes consist of upward sensible heat flux
(SHgFC), upward latent heat flux (LH;FC), and net upward
longwave flux (LWIT\IET SFC) minus net downward shortwave

1 o .

flux (SWNET’SFC). P is the.surface prfassure, T 1§ the a}tmos-
pheric temperature, and ¢ is the specific humidity, with the
constants C,,, the heat capacity at constant pressure, and L,,
the latent heat of vaporization for water. The second term on

the right-hand side is the time tendency in vertical integral

where NEI=SW} . ..
—SWj
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of atmospheric moist enthalpy, which represents energy stor-
age in the atmosphere. Note that all quantities are zonally
averaged.

By applying the first-order Taylor expansion of AET at
the equator and substituting Eq. (1) for the divergence of
AET, we obtain an expression for the energy flux equator
and thus the ITCZ position (Schneider et al. 2014; Adam
et al. 2016a):

EFE & ¢ppey = __AET,
04 (AET),
~ AET,
NEL, - (4 /" (cpT+qu)§)0 @
AET,
= NEI,

where the subscript 0 denotes the equatorial values. Follow-
ing Adam et al. (2016a), the time tendency of atmospheric
energy storage term near the equator is neglected since it is
small relative to NEI,,

2.2 Data and analysis method

We examine the monthly data of historical simulations from
13 CMIP3, 35 CMIPS5, and 25 CMIP6 models (Table S1)
(Meehl et al. 2007; Taylor et al. 2012; Eyring et al. 2016).
We only use the first ensemble member for each model. NEI
is calculated as the sum of downward net TOA radiation and
upward net surface energy flux. AET is calculated by taking
the spatial integral of the right-hand side of Eq. (1) over the
Southern Hemisphere, after subtracting the global-mean. We
adopt this indirect method for estimating AET, because the
temporal resolution is too coarse to resolve transient eddies.

The observed climate features are characterized by two
datasets for precipitation: Global Precipitation Climatology
Project (GPCP) (Adler et al. 2003) and Climate Predic-
tion Center (CPC) merged analysis precipitation (CMAP)
product (Xie and Arkin 1997). Although CMAP is par-
tially obtained from the NCEP/NCAR reanalysis data, we
use both GPCP and CMAP in an effort to represent uncer-
tainty in observations. In contrast to the models, we use a
direct method for calculating the observed estimate of AET
using four-times daily European Center for Medium-Range
Weather Forecasts (ECMWF) Interim Reanalysis (ERA-
Interim) product (Dee et al. 2011). When calculating AET,
winds are first forced to balance the atmospheric mass
budget with a barotropic wind correction as in Trenberth
(1997). The corrected winds are used to calculate the merid-
ional flux of moist static energy, which is then vertically
integrated to derive AET. The observed estimate of NEI is
obtained as the sum of atmospheric heat storage and AET
divergence, following Eq. (1).

Both CMIP and observations are analyzed for the 20-year
period from 1980 to 1999 and interpolated to a common
1° x 1° grid. In both cases, the NEI, is calculated as the area-
average over 6° S—6° N. While the exact value of NEI|, is
sensitive to the meridional boundary of integration, it does
not affect the qualitative features of our results.

3 Results

3.1 Characterizing inter-model spread in zonal-
and annual- mean tropical precipitation

We first normalize each model’s precipitation by its tropical-
mean value (20° S-20° N) to highlight the difference in spa-
tial pattern across models (Fig. 1a). The multi-model-mean
(black) is biased compared to observations (colors): models
produce relatively less precipitation near and north of the
equator and relatively more precipitation in the southern
tropics, which is the well-known double-ITCZ bias. Notably,
the inter-model spread of normalized tropical precipitation is
so large that it is substantially larger than the bias of multi-
model-mean from observations.

To objectively characterize the inter-model spread,
we apply an inter-model EOF analysis to the normalized
zonal-mean tropical precipitation. The two observations
are included when performing the EOF analysis in order to
elucidate how each model is biased relative to the observa-
tional estimates. The EOF analysis results with and with-
out the observations are essentially indistinguishable. The
first two modes explain 77% of the spread (Fig. 1b). The
first mode (denoted TOT1, red dashed) is nearly symmet-
ric about the equator, whereas the second mode (denoted
TOT2, blue dashed) is anti-symmetric about the equator.
To more cleanly separate the symmetric and anti-symmetric
components of spread, we separately apply an inter-model
EOF analysis to the hemispherically symmetric and anti-
symmetric components of normalized tropical precipita-
tion. The first mode of symmetric component is denoted as
SYMI and the corresponding principal component as SYM1
-PC. Conversely, the first mode of anti-symmetric compo-
nent is denoted as ASY1 and the corresponding principal
component as ASY 1-PC. As expected, SYMI-PC exhibits
a high correlation of 0.91 with the equatorial precipitation
index (Ep), which quantifies the hemispherically symmetric
component in Adam et al. (2016b) (Fig. Sla); meanwhile,
ASY I-PC exhibits a high correlation of 0.98 with the tropi-
cal precipitation asymmetry index (PAI), which quantifies
the hemispherically anti-symmetric component in Hwang
and Frierson (2013) (Fig. S1b). The meridional profile of
SYMl is close to that of TOT1 while the meridional pattern
of ASY1is close to that of TOT?2 (Fig. 1b). High correlation
between the corresponding PCs (Fig. Slc-d) indicates that
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(a) Normalized zonal mean tropical precip.
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Fig.1 a Annual- and zonal- mean tropical precipitation normal-
ized by tropical-mean (20° S-20° N) in observations (colors), CMIP
models (gray), and multi-model-mean (black) (unitless). b The
first (TOT1; red dashed) and second (TOT2; blue dashed) mode of
inter-model variability from the EOF analysis of both modeled and
observed precipitation in a, and the first mode of the hemispherically
symmetric (SYM1; red solid) and anti-symmetric (ASY 1; blue solid)
components of a. The fraction of explained variance of each mode

TOT1 and TOT2 correspond to SYM1 and ASY 1, respec-
tively. That is, the first two EOFs of normalized tropical pre-
cipitation across models and observations are nearly identi-
cal to the hemispherically symmetric and anti-symmetric
components. By construction, the EOFs TOT1 and TOT2
are orthogonal just as, by geometric arguments, ASY 1 and
SYMI1 are orthogonal. In this sense, SYM1 and ASY1 can
be thought of as an alternative basis for describing tropical
precipitation biases with only a slight loss of optimization
for variance explained in the EOF basis. Hereafter, we exam-
ine SYM1and ASY1.

SYMI, which explains about 53% of the total inter-model
variability of normalized tropical precipitation, is charac-
terized by an equatorward squeeze of tropical precipitation
(red in Fig. 1c). SYM1 PC is more negative in most models
compared to observations (Fig. 1d), indicative of deficient
precipitation near the equator and excessive precipitation off
the equator, consistent with the bias of normalized tropical
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is shown in the legend. ¢ Multi-model-mean of normalized tropical
precipitation (black) and that added to one positive standard deviation
of SYMI-PC (red) and ASY1-PC (blue). d The SYM1-PC (x-axis)
versus ASY 1-PC (y-axis) for CMIP3 (light gray), CMIPS (dark gray),
and CMIP6 (black) models. Model numbers increase in the order
of SYM1-PC and the model name corresponding to each number is
offered in Table S1. Colored circles represent observational estima-
tions from GPCP (green) and CMAP (magenta)

precipitation in Fig. 1a. ASY 1, which explains about 24% of
the total inter-model variability, is characterized by a north-
ward shift of tropical precipitation (blue in Fig. 1c). Most
models have smaller ASY1-PC values than observations
(Fig. 1d), indicative of more precipitation in the southern
tropics than in the northern tropics relative to observations,
consistent with Fig. la.

In the following analysis, we focus on the examina-
tion of SYM1, which is the leading mode of inter-model
variability of normalized tropical precipitation. We com-
pare the monthly precipitation climatology of ten models
of the lowest SYMI-PC values (Fig. 2a) and ten models
of the highest SYM1-PC values (Fig. 2b). The latitude of
maximum precipitation extends farther poleward through-
out the year for ten models of the lowest SYM1-PC values
than those of the highest. Hence, the pattern of monthly
normalized zonal mean tropical precipitation regressed
onto SYMI-PC exhibits an equatorial squeeze of tropical
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precipitation throughout the year (Fig. 2c). That is, mod-
els with larger relative annual-mean precipitation in the
equatorial band would exhibit a smaller amplitude of the
seasonal cycle of the ITCZ position. To quantify this rela-
tionship, we measure the seasonal amplitude of the ITCZ

position as Amp(Bircz) = \/ ol
ﬂiTCZ is the latitude of maximum zonal-mean precipitation
at the ith month and @y, is annual-mean value. Figure 2d
shows that Amp(ﬂITCZ) is strongly correlated with SYM1-PC
(r=—0.89), which implies that the inter-model spread in the
hemispherically symmetric component of annual- and zonal-
mean tropical precipitation is associated with the seasonal
amplitude of the ITCZ position. Thus, in the next section, we
examine the factors contributing to the inter-model spread in
the seasonal amplitude of the ITCZ position.
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Fig.2 Hovmoller diagram of monthly normalized precipitation com-
posites (shading) of a 10 models with the lowest SYM1-PC and b 10
models with the highest SYM1-PC, with the multi-model-mean of all
available 73 models (contour; interval =0.25 mm day_l). ¢ The inter-
model linear regression map of monthly precipitation onto SYM1-PC
(shading). Black contour is the same as in a, b. Hatching indicates

3.2 Application of the energetic constraints

The atmospheric energy budget in Eq. (2) allows us to
attribute the monthly variation in the ITCZ position to the
monthly variation of AET and/or NEI,;: a more equatorward
ITCZ is associated with a smaller AET,, and/or a larger NEI,,
and vice versa for a more poleward ITCZ. Hence, the models
with a smaller seasonal cycle of the ITCZ (i.e., larger SYM1
-PC values) exhibit a smaller seasonal amplitude of AET,
and a larger NEI|, for all months compared to the models
with a larger seasonal cycle of the ITCZ (i.e., smaller SYM1
-PC values) (Fig. S2).

The seasonal amplitude of AET, is calculated as

. X —\2 .
Amp(AET,) = \/ Yo (AET, ~AET, )" where AET, is

the cross-equatorial AET at the ith month and AET| is
annual-mean value. A smaller Amp(AETO) is associated

unitless
Dec 2
Oct
1.5
Agu
Jun
1
Apr |
0.5
Feb -
20°s 10°S 0° 10°N 20°N
(d) Symmetric spread
r=-0.89
Q@ﬂ
N
1 2

SYM1-PC

where the regression coefficient is significantly different from zero at
the 95% confidence level using a two-sided Student’s ¢ test. d Scatter
plot between SYM1-PC and the seasonal amplitude of monthly ITCZ,
Amp(ﬂrrcz), with the correlation coefficient indicated in the upper
right corner
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with a smaller seasonal amplitude of the ITCZ position (Fig.
S2a), leading to an equatorward squeeze of the annual-mean
normalized tropical precipitation, reflected as a larger SYM1
-PC. Indeed, Amp(AET,)) is negatively correlated to SYM1
-PC, with r=—0.48 (Fig. 3a). A larger NEI, is associated
with the ITCZ closer to the equator for all months (Fig. S2b),
hence, the annual-mean NEI, is positively correlated with
SYMI-PC with r=0.48 (Fig. 3b). Note that the annual-mean
NEI, is used here because the inter-model spread in NEI,,
exhibits little seasonality (Fig. S2b). Guided by the approxi-
mation in Eq. (2), we measure the correlation between SYM1

Amp(AET, .
-PC and % (Fig. 3c). When both Amp(AET,)

and the annual-mean NEI are considered, the correlation
coefficient is higher (r=—0.78) than when either factor is
individually considered, implying that both factors contrib-
ute to the spread in SYM 1-PC. We now investigate possible
controlling factors of Amp(AETO) and the annual-mean
NEI,, respectively.

3.2.1 Effect of spread of monthly variations in AET,
on tropical precipitation

Equation (1) indicates that the seasonal variations in
AET,, are determined by the hemispheric asymme-
try in NEI and atmospheric energy storage (STOR,,).
Following Donohoe et al. (2013), we rearrange NEI
as the sum of the shortwave radiation absorbed in the
atmosphere ( SWABS = SWLET‘TOA - SWI{]ET’SFC ),
energy fluxed from the surface to the atmosphere
(SE = SH{. + LH{ . + LW] .. o), and outgoing long-
wave radiation (OLR). Such rearrangement is motivated by

the fact that the atmosphere is heated by the direct solar
absorption within the atmosphere SWABS and the non-solar
energy exchange between the surface and the atmosphere SE
(Donohoe and Battisti 2013).

The monthly variation of the hemispheric contrast in
each term (Fig. S3a) is regressed onto SYM1-PC (Fig. S3b).
Among the four terms, the seasonal amplitude of hemi-
spheric asymmetry in atmospheric shortwave absorption,
denoted as Amp(SWABS) where () indicates the hemispheric
contrast, is most strongly correlated to SYM1-PC with r=—
0.50 (Fig. 4a). Furthermore, most spread in SWABS congru-
ent with SYM1-PC originates from the clear-sky component
SWABS;, rather than the cloud radiative effect SWABS
(Fig. S3b).

The regression map of SWABS. onto SYMI-PC for
boreal summer (May-June-July) and austral summer
(November-December—January) is shown as shading
in Fig. 4b, c, respectively. The models with larger SYM1
-PC values tend to have less clear-sky shortwave absorp-
tion over the entire globe, with the most pronounced effect
in the summer hemisphere. Less SWABS, in the summer
hemisphere than the winter hemisphere would act to reduce
the hemispheric contrast in NEI, requiring less atmospheric
energy transport toward the winter hemisphere, thereby
placing the ITCZ more toward the equator. The inter-model
spread of SWABS . is especially pronounced in the sub-
tropics of the summer hemisphere where the climatological
SWABS,,, is maximized (colored contours in Fig. 4b, c).
Hence, the hemispheric asymmetry of SWABS,, is propor-
tional to the global- and annual-mean SWABS;, (Fig. S4a).
The inter-model spread of SWABS, presumably originates
from model differences in water vapor distribution and/or

cre

(a) AET0 effect (b) NEI0 effect (c) Combined effect
1.5 1.5 1.5
1 1 1
0.5 0.5 0.5
e o e o e o
P -0.5 n -0.5 n -0.5
-1 -1 -1
1.5 -1.5 1.5
r=-0.48 1 1 r=0.48 r=-0.78 1
2 . . . -2 . . . . , -2 . . . ,
15 2 2.5 15 20 25 30 35 40 59 10° 15° 20° 25°

Amp(AET ) [PW]

Fig.3 Scatter plot between SYMI1-PC and a the seasonal amplitude
of cross-equatorial atmospheric energy transport Amp(AET0 ), b the
annual-mean NEI|,, and ¢ the estimate of seasonal amplitude of ITCZ
position from the energetic constraints, i.e., Amp (AETO) /NEIj where
NEIL is the annual-mean NEI, whose unit is converted from W/m? to
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NEI, [W/m?]

Amp(AET /NEI)

PW/1°. The green circle denotes the observed values: SYM1-PC on
the ordinate from GPCP and the energetic variables on the abscissa
from ERA-interim. The correlation coefficients are shown as bold
text in each panel. All correlation coefficients are significantly differ-
ent from zero according to a t-test at 95% confidence level
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90°s : . .
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lins et al. 2006).

(c) SYM1-PC vs. SWABSclr (NDJ) To differentiate the effect of water vapor distribution
90°N L from parameterization, we employ radiative kernels from
s the Community Earth System Model 1.1.2 (Pendergrass

- et al. 2018). The clear-sky shortwave moisture kernel for
a0y ”” 1 . . . .
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Fig.4 a Scatter plot between the seasonal amplitude of SWABS and
SYMI-PC. Inter-model regression map of SWABS,, onto SYM1-PC
(shading) and the multi-model-mean climatology of SWABS . with
a contour interval of 10 W/m? (colored contour) for b May—June—July
and ¢ November—December—January. In b, ¢, the values that are sig-
nificantly different from zero according to a t-test at 95% confidence
level are hatched and 66 subsets of CMIP models in which SWABS ;.
are made available are used for the analysis (Table S1)

inter-model spread of logarithm of specific humidity. The
effect of albedo spread is also calculated and included in
the estimation of SWABS_,, but has an almost negligible
effect (not shown). The vertically integrated and globally
averaged values of the actual SWABS;, and the estimation
from the kernel (denoted as SWABS'C‘lerr“e]) are compared in
Fig. 5. The radiative kernel analysis indicates that the inter-
model spread in neither water vapor distribution nor albedo
explains the inter-model spread in SWABS ., as can be seen
from a much smaller range of SWABS'C‘ler"‘e1 than SWABS;,

(Fig. 5). Note that the scale of ordinate is 5 times smaller
than the scale of abscissa. Ruling out the effect of model dif-
ferences in water vapor distribution, a plausible alternative
cause for the inter-model spread in SWABS , is differences
in radiative transfer parameterizations, such as spectral reso-
lution or extinction coefficient for water vapor. This specula-
tion is supported by Pincus et al. (2015) that shows model
differences in radiation parameterization produce large
errors in shortwave absorption that outweigh the impact
of model differences in atmospheric states, by performing
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calculations with radiative transfer codes extracted from host
CMIP models.

3.2.2 Effect of spread of annual-mean NEI, on tropical
precipitation

Among the components of NEI,, the equa-
torial annual-mean net surface heat flux
(SFC, = SH(T) + LH(T) - SWI{IETO + LWIT\IET 0) is most strongly

correlated with SYMI-PC at 0.57 (Fig. 6a). The regression
map of the annual-mean SFC onto SYMI-PC (shading in
Fig. 6b) reveals a large inter-model diversity of SFC con-
gruent with SYMI-PC on the equatorial Pacific and Atlan-
tic. Less downward surface energy flux near the equator is
straddled by less upward surface energy flux in the subtrop-
ics, indicative of weaker oceanic heat transport (Boccal-
etti et al. 2004). This suggests that SYM1-PC is associated
with the strength of the cold tongue, which is supported
by the regression map of normalized SSTs (i.e., SSTs of
each model normalized by the average SST between 20° S
and 20° N) onto SYM1-PC (contour in Fig. 6b). That is, the
models with more equatorially focused precipitation show a
relatively warmer equatorial upwelling region thus weaker
cold tongue strength, which is associated with the ineffective
oceanic heat transport from the tropics to the subtropics.

To examine whether oceanic processes play an essential
role in determining the inter-model spread of SFC congruent
with SYM1-PC, we additionally analyze 48 AMIP experi-
ments for the same period. In AMIP with prescribed SSTs
and sea ice, the SFC regression map no longer shows a sig-
nificant upward net surface flux in the equatorial Pacific
(contrast Fig. 6b, ¢). This implies that model differences
in atmospheric components may not be the cause of inter-
model diversity of SFC, in the Pacific. Thus, the inter-model
spread of the Pacific cold tongue strength associated with
SYMI-PC could be attributed to model differences in the
ocean dynamics or atmosphere—ocean coupling effect, con-
sistent with Li et al. (2015) who suggest that the excessive
cold tongue bias could be traced back to a strong oceanic
dynamic cooling linked to shallow thermocline along the
equatorial Pacific.

4 Summary and discussions

In this study, we investigate the possible causes for the inter-
model spread and bias in the present-day zonal-mean tropi-
cal precipitation pattern. The inter-model EOF analysis is
applied to the zonal-mean tropical precipitation patterns of
models and observations. The first two modes closely resem-
ble the hemispherically symmetric (SYM1) and anti-sym-
metric (ASY1) components, which respectively explain
53.0% and 24.3% of the total variance of precipitation
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Fig.6 a Scatter plot between the annual-mean upward positive net
surface energy flux averaged between 6° S and 6° N (SFC;) and
SYMI-PC. b Inter-model regression map of annual-mean net surface
energy flux onto SYM1-PC (shading) and inter-model regression map
of normalized tropical SST onto SYMI-PC (colored contour) from
CMIP models. Only statistically significant values are shown as con-
tour, with positive values in pink and negative values in green. The
contour interval is 3 x 107 (unitless). ¢ Inter-model regression map
of net surface energy flux from AMIP onto SYMI-PC from CMIP. In
b, ¢, the statistically significant values are hatched as in Fig. 4

spread. The orthogonality of EOFs implies that SYM1 and
ASY1 originate from independent mechanisms. The leading
mode (SYM1) is associated with the amplitude of monthly
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variations in maximum precipitation position (i.e., ITCZ
location). Based on the energetic framework linking the
ITCZ position to the atmospheric energy budget, SYM1 is
related to both the seasonal amplitude of cross-equatorial
atmospheric energy transport Amp(AET, ) and the annual-
mean net energy input into the equatorial atmosphere col-
umn NEI,. Accurately speaking, the atmospheric energetic
budget offers a proxy for the energy flux equator, not the

ITCZ position itself; however, the energetic proxy value
AmpP ETO

annual— mean(NEIO)
highly correlated with the coefficient of 0.73 and the regres-
sion slope of 0.32 (Fig. S95).

Among the components of AET,, the seasonal amplitude
in the clear-sky SW atmospheric absorption (SWABSc]r)
most strongly correlated with SYM1-PC. The pattern of
SWABS, regressed onto SYM1-PC reveals that the models
with a smaller annual- and global-mean SWABS . are asso-
ciated with a weaker amplitude of hemispheric contrast in
SWABS,,,, and the tropical precipitation is squeezed toward
the equator. Indeed, a significant, albeit weak, correlation
is found between the global-mean SWABS, and SYMI-
PC (Fig. S4b). Using the radiative kernels, we find that the
spread of annual- and global-mean SWABS_, is not attribut-
able to model differences in water vapor distribution, sug-
gesting model differences in radiative transfer parameteriza-
tions as a likely cause (Fig. 5).

Among the components of NEI, the net surface energy
flux in the equatorial region (SFC,) is most strongly linked
to SYM1-PC. The regression map of SFC onto SYM1-PC
implies that a larger SYM1-PC is associated with a weaker
atmospheric cooling over the equatorial upwelling region
in the Pacific and Atlantic. A comparative analysis between
CMIP and AMIP experiments suggests the importance of
the ocean—atmosphere coupling particularly in the Pacific.
We note that a causal relationship between SYM1-PC and
SFC is not possible to discern from the correlation alone.
For example, models with a smaller SYMI1-PC would
exhibit stronger trade winds, leading to a stronger equato-
rial upwelling. Regardless of the direction of causality, our
results address the importance of improving model repre-
sentation of cold tongue for correcting the simulated tropical
precipitation pattern, consistent with previous studies (Li
and Xie 2014; Adam et al. 2017).

To provide input on where focus could be most effec-
tively applied in model development, we compare SYM1-
PC of AMIP and CMIP. Weak but statistically significant
correlation of 0.44 between the two (Fig. S6a) indicates
that the variations among atmospheric components contrib-
ute to the precipitation bias in coupled models. As one of
the candidates for biases to improve in atmospheric com-
ponents, we consider model differences in annual- and
global-mean SWABS whose similarity in magnitude and

and actual ITCZ position Amp (@i, ) are

regression patterns between AMIP and CMIP experiments
are stark (Fig. S6b and S7). The biases originating from
the atmospheric component are exacerbated when coupled
to a dynamic ocean—shown by larger inter-model spread
of SYMI-PC in CMIP than AMIP experiments (Fig. S6a).
Ocean—atmosphere interaction affects the net surface energy
flux pattern in the deep tropics via modulation of the cooling
strength over the equatorial upwelling regions (Fig. 6b), con-
tributing to the symmetrical precipitation biases, consistent
with Adam et al. (2017). Dissimilarity of the surface flux
regression patterns between CMIP and AMIP (Fig. 6b, c)
indicates that the bias in the Pacific is probably influenced by
model differences in ocean dynamics or coupling processes.

This study focuses on the tropical precipitation pattern in
the present-day climate state, but the analysis approach could
be applied to understanding the factors controlling the future
projections of tropical precipitation pattern. For example, the
energetic constraints used to explain the symmetric pattern
of present-day tropical precipitation spread can be similarly
applied to explain the tropical precipitation squeeze pattern
in global warming simulations (Lau and Kim 2015; Dono-
hoe et al. 2019; Zhou et al. 2019). Furthermore, it is yet to
be seen how the model bias in tropical precipitation affects
the projected changes in tropical precipitation pattern.
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