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Abstract

In a context of water scarcity in Peruvian Pacific catchments as a crucial issue for

Peru, added to the paucity of data availability, we propose a methodology that pro-

vides new perspectives for freshwater availability estimation as a base reference for

unimpaired conditions. Under those considerations, a regional discharge of 709 m3/

s to the Pacific Ocean is estimated with a significant increasing trend of about

43 m3/s per decade over the 1970–2010 period.

To represent the multidecadal behaviour of freshwater runoff along the region, a

regional runoff analysis is proposed based on hydrological modelling at annual and

monthly time step for unimpaired conditions over the whole 1970–2010 period. Dif-

ferential Split‐Sample Tests are used to assess the hydrological modelling robustness

of the GR1A and GR2M conceptual lumped models, showing a satisfactory

transposability from dry to wet years inside the thresholds defined for Nash–

Sutcliffe and bias criteria. This allowed relating physical catchment characteristics with

calibrated and validated model parameters, thus offering a regional perspective for

dryland conditions in the study area (e.g., the anticlockwise hysteresis relationship

found for seasonal precipitation–runoff relationship) as well as the impacts of climate

variability and catchment characteristics.
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1 | INTRODUCTION

Catchments draining into the Pacific Ocean of Peru are characterized

by dryland conditions and frequent conflicts between multiple water

users regarding water allocation and access. More than 50% of the

Peruvian population are situated within this region, which holds only

2% of all available freshwater in Peru (ANA, 2012). Previous studies,

such as Lavado, Ronchail, Labat, Espinoza, and Guyot (2012) and Rau

et al. (2018), showed evidence of poorly gauged and ungauged catch-

ment conditions with strong anthropogenic influence (e.g., large

hydraulic infrastructure) on water balance and runoff in the last four

decades.
wileyonlinelibrary.
Although hydrological models can provide insights on the

precipitation–runoff mechanism, they remain abstractions of a real

system, and none of them can be assumed to generate accurate infor-

mation for specific catchments and hydrologic conditions (Seiller,

Anctil, & Perrin, 2012). Conceptual lumped models and the evaluation

of their performance are being increasingly used to estimate regional

water availability (Castiglioni, Lombardi, Toth, Castellarin, &

Montanari, 2010; Ibrahim, Wisser, Barry, Fowe, & Aduna, 2015; Wale,

Rientjes, Gieske, & Getachew, 2009) and potential impacts of climate

change on hydrological systems (Coron et al., 2012; Fabre, Ruelland,

Dezetter, & Grouillet, 2016; Fowler, Peel, Western, Zhang, & Peter-

son, 2016; Ruelland, Ardoin‐Bardin, Collet, & Roucou, 2012; Ruelland,
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Hublart, & Tramblay, 2015; Seiller et al., 2012; Seiller, Hajji, & Anctil,

2015; Wang, Sankarasubramanian, & Ranjithan, 2015).

Runoff estimates take into account historical observations of

streamflow, which reflect changes in environmental conditions, such

as climate and land use. Under changing climatic conditions,

conceptual models would show a stronger predictive capability than

previously suggested (Fowler et al., 2016). However, conceptual

modelling is regularly criticized for oversimplifying the physics of

catchments, leading to potentially less reliable simulations than those

produced by physically based models when conditions shift beyond

the range of prior experience (Hublart, Ruelland, Dezetter, & Jourde,

2015). Under stationary conditions (here mostly referring to the cli-

matic and physical characteristics of the catchment), common sources

of uncertainty in hydrological modelling are linked to the structure of

the model, the calibration procedures, and intrinsic uncertainty in the

data used for calibration and validation (e.g., Brigode, Oudin, & Perrin,

2013; Liu & Gupta, 2007). Under nonstationary conditions, such as

those associated with climate variability and change, an additional

source of uncertainty results from parameter variability due to

possible changes in the physical characteristics of the catchment

(e.g., vegetation cover) and in the main processes involved

(e.g., evapotranspiration changes; see Coron et al., 2012; Thompson

et al., 2013).

Under these conditions, regional runoff assessment through

hydrological modelling represents the most common challenge in

regional hydrology. Applying a regional hydrological model implies its

repeated use everywhere within a region, using a global set of param-

eters, which are generally transferred from gauged catchments

(Engeland & Gottschalk, 2002; Seibert & Beven, 2009). Therefore, it

seems necessary to evaluate the modelling robustness and, particu-

larly, the transposability of the calibrated parameters to contrasted cli-

mate and/or anthropogenic conditions (Nauditt, Birkel, Soulsby, &

Ribbe, 2016). Thirel et al. (2015) suggested a calibration and evalua-

tion protocol for dealing with changing catchments, highlighting the

advantages of the Differential Split‐SampleTest (DSST; Klemeš, 1986).

One of the major obstacles in estimating regional and continental

freshwater runoff is the lack of gauging stations and, hence, data scar-

city. Some methods have been applied to account for the contribution

from poorly gauged regions in estimating long‐term mean discharge as

a simple sum of available streamflow records. However, these

methods would likely imply discontinuities, which are a major chal-

lenge in long‐term climate data analyses (Milliman & Farnsworth,

2011). Unimpaired runoff could be considered as a valuable source

for identifying long‐term climate variability and change impacts. Its

application also includes legal and water management questions (Null

& Viers, 2013). In our study, we propose the use of unimpaired runoff,

which is defined as data from unregulated rivers or where regulation

changes the natural monthly streamflow volumes by less than 5%

(Boughton, 1999).

A few in‐depth hydrological studies were developed in the Peru-

vian Pacific drainage region (hereafter Pd): de Reparaz (2013) docu-

mented and analysed earlier hydrological and physical conditions

along the entire study area (i.e., 54 catchments) from the 1920s until

the 1960s. ANA (2012) assessed the water supply and demand in

the main gauged catchments where water management is prioritized.
They estimated the total annual volume of freshwater availability

along the Pd from the 1970s to 2010. Lavado et al. (2012) analysed

mean conditions and variability of streamflow from 1969 to 2004.

Rau et al. (2018) identified annual runoff for some catchments with

low water balance disparities or with quasinatural conditions (hereaf-

ter, unimpaired conditions) at interannual scale from 1970 to

2008. In general, these studies barely addressed regional runoff

behaviour. To our knowledge, a regional study, which includes

long‐term mean rates of runoff as well as yearly and seasonal runoff

variability and which would allow for identifying key elements of

water resources management, has never been conducted in the Pd

region. In this context, the present study aims at (a) assessing

the ability of two conceptual lumped hydrological models, GR1A

(Mouelhi, Michel, Perrin, & Andréassian, 2006b) and GR2M

(Mouelhi, Michel, Perrin, & Andréassian, 2006a), to simulate regional

interannual and unimpaired runoff over a multidecadal period

(1970–2010) under significant hydroclimatic variability and (b) quan-

tifying multidecadal freshwater availability in a context of limited

data and water scarcity.
2 | STUDY AREA AND DATA

2.1 | General description

The Pd covers an area of about 280,500 km2 (see Figure 1a). The

study region includes 49 main river catchments with strong altitudinal

gradients ranging from 0 to around 6,500 m asl. Rivers in these small

and medium catchments (500–16,000 km2) with bare and steep slopes

(4–9%) generally drain westwards from the high Andes into the Pacific

Ocean. Therefore, during heavy precipitation events, high potential for

rising of peak discharge, flooding, and erosion prevails (see Lavado

et al., 2012; Rau et al. 2018). Seven catchments were selected

(Figure 1a) due to their unimpaired conditions according to a prior

identification done by Rau et al. (2018).

Near the coast, dry climatic conditions are heavily constrained by

oceanic conditions that are characterized by a permanent upwelling

south of ~5°S that stabilizes a shallow marine boundary layer. In the

northern part, these dry conditions are altered seasonally by the

meridional migration of the Intertropical Convergence Zone. Addition-

ally, anomalous precipitation events over the Pd are related to El Niño

Southern Oscillation (ENSO) at an interannual timescale. ENSO pre-

sents a direct influence over the northern downstream regions and

an inverse influence over upstream regions along the Pd (see Bourrel

et al., 2015; Rau et al., 2017; Sanabria et al., 2018 for a complete doc-

umentation about ENSO's influence at the Peruvian coast).

The western flank of the Andes is composed of igneous rocks as

follows: until ~8°S Palaeozoic to Cretaceous formations prevail; from

8°S to 16°S geological formations are dominated by the continuous

Andean batholith, whereas further south the lithology is covered by

young volcanic rocks, vast Tertiary pampas, and coastal ranges. These

conditions do not favour underflow (i.e., regional recharge) in some

Andean regions, mainly due to the presence of the continuous batho-

lith between 2,000 and 4,000 m asl (see Figure 1b) acting as a barrier



FIGURE 1 Spatial distribution of the seven studied catchments in the Pd. (a) Hydrometeorological stations and topography from the SRTM
(90 m) digital elevation model and (b) Geological framework (after Gilboa, 1971). Each catchment has a mean seasonal lumped runoff,
precipitation, and evapotranspiration (left) and presents a precipitation–runoff anticlockwise hysteresis plot in a bilogarithmic scale of monthly
data (right). Colour classification is scaled for a hydrological year (September–August)
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that limits precipitation drainage through the canyons and main chan-

nels (Gilboa, 1971).

The Pd is mainly characterized by arid and semiarid conditions

and, thus, prone for water shortage threats for human consumption

in major cities in arid lowlands and agriculture and industries located

throughout the catchments. Water demand for economic activities

(agriculture, mining, industries, and livestock) and domestic use

account for about 87% of total national consumption. Agriculture only

represents the major water consumer (86% in the Pd), as it mainly

relies on irrigation systems in the arid lowlands. In addition to the
TABLE 1 General characteristics of the seven studied catchments at the

n° Catchment
Gauging station
(data period)

Min Alt
(m asl)

Max Alt
(m asl)

A
(km

1 Piura Pte. Ñacara(1970–2005) 119 3,526 4,

2 Chicama Salinar(1970–2008) 350 4,217 3,

3 Casma S. Tutuma(1970–2005) 71 4,769 2,

4 San Juan Conta(1970–2006) 350 5,049 3,

5 Acari Bella Union(1970–2008) 70 4,620 4,

6 Camana Pte Camana(1970–2006) 122 6,300 16,

7 Tambo Chucarapi(1970–2008) 281 5,554 13,

Note. Min Alt: minimum altitude; Max Alt: maximum altitude; A: drainage area; L
itation; PET: mean annual evapotranspiration; R: mean annual runoff.
threat of water shortages, the Pd is prone to devastating floods

(ANA, 2012).

2.2 | Hydrometeorological dataset and validation

The database includes monthly precipitation and temperature for the

1970–2010 period. Available data periods for streamflow observa-

tions are indicated in Table 1. Precipitation series were obtained from

139 pluviometric stations, temperature series from 59 meteorological

stations (see Figure 1a), and monthly streamflow from seven
ir outlets gauging stations for the indicated period

2)
L
(km)

p
(km)

S
(%)

P
(mm/year)

PET
(mm/year)

R
(mm/year)

762 96 363 5.7 613 1,376 181

684 98 323 8.5 643 1,013 211

567 86 241 9.1 430 769 75

057 116 293 6.9 393 496 119

242 158 471 6.1 486 715 92

238 360 1,060 5.4 441 593 137

063 254 820 5.0 418 566 82

: main channel length; p: perimeter; S: mean slope; P: Mean annual precip-
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hydrological stations managed by the National Meteorological and

Hydrological Service of Peru (SENAMHI).

A careful quality check of these data was previously performed.

Monthly precipitation, temperature, and streamflow data were

homogenized and validated according to Bourrel et al. (2015); Rau

et al. (2018); Rau et al. (2017). Precipitation and temperature data

were interpolated to a 5 × 5 km grid using inverse distance weighting

interpolation and considering altitudinal gradients. Orographic effects

on precipitation and temperature were addressed using the SRTM

(Shuttle Radar Topography Mission, NASA‐NGA, USA) digital eleva-

tion model in a similar way described in Ruelland, Dezetter, and

Hublart (2014). These effects on precipitation and temperature were

addressed considering our observed data with the approach proposed

by Valéry, Andréassian, and Perrin (2010) using a correction factor of

4 × 10−4 m−1 for precipitation that corresponds to a 20% increase in

local precipitation per 500‐m elevation rise and by accounting for a

constant lapse rate of −6.5 °C/km for temperature. Potential evapo-

transpiration (PET) was calculated according to Oudin et al. (2005)

who use clear monthly sky solar radiation and mean monthly air tem-

perature, and was adapted, based on Hublart et al. (2015), to (semi)arid

regions limited by scarcity of in situ climate data.

PET ¼ Re

λρ
Tþ K2

K1
if Tþ K2 > 0 PET ¼ 0; otherwise; (1)

where PET is the rate of potential evapotranspiration (mm/d), Re is the

extraterrestrial radiation (MJ/m2/d), λ is the latent heat flux (2.45 MJ/

kg), ρ is the density of water (kg/m3), T is the mean daily surface air

temperature (°C), and K1 and K2 are fitted parameters (for a general

case: K1~100 and K2~5).

Finally, we restricted our analysis to seven catchments (see

Table 1 and Figure 1a), which include complete and confident datasets
FIGURE 2 Scheme of the GR2M model with
the parameters X1 and X2 (modified from
Mouelhi et al., 2006a)
of monthly precipitation, temperature, and streamflow series over the

1970–2010 period.
3 | METHODS

3.1 | Runoff simulation based on conceptual lumped
models

Annual runoff over each catchment was simulated with the lumped

hydrological model GR1A (Mouelhi et al., 2006b) considering the

hydrological year from September to August. The GR1A model was

established as a revisit of the Manabe bucket model (Manabe, 1969)

that belongs to the first generation of land‐surface models. The

GR1A has a semiempirical and lumped structure showing the useful-

ness of antecedent annual precipitation and reduced representative-

ness of a reservoir at the annual time step. It means a reduced

model with only one‐parameter as follows:

Qk ¼ Pk 1 −
1

1þ 0:7Pkþ0:3Pk−1
X:PETk

� �2
� �0:5

8>>><
>>>:

9>>>=
>>>;
: (2)

Qk is the simulated streamflow of the year k, Pk is the annual precip-

itation of the year k, Pk−1 is the annual precipitation of the year k−1, PETk

is the potential evapotranspiration of the year k, and X is the one‐

parameter of the model to be optimized. The advantage of this one‐

parametermodel is its high parsimony being a benchmarkmodel for com-

paring the simulated long‐term average streamflow with other models.

Seasonal runoff was simulated with the lumped monthly model

GR2M (Mouelhi et al., 2006a). This model is based on two reservoirs

and two calibration parameters. According to Figure 2, the soil



FIGURE 3 Proposed scheme for carrying out the DSST methodology
in each catchment. DSST: Differential Split‐Sample Test; NSE: Nash–
Sutcliffe efficiency
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quadratic reservoir (S′) defines the production function with a maximal

capacity X1; the gravity reservoir (R′) defines the transfer function

with the parameter X2, determining the runoff at the outlet and the

exchange processes of water between the surface and the under-

ground (Ibrahim et al., 2015). GR2M is a widely used hydrological

model due to its high parsimony. Its semiempirical approach has been

demonstrated to perform well when compared with similar monthly

models, and sensitivity analyses have determined that GR2M is sensi-

tive to white noise errors in precipitation data but comparatively

robust to random errors in potential evapotranspiration data (Huard

& Mailhot, 2008). Also, it is worth to mention that studies have shown

the influence of random errors as lapse rate corrections to precipita-

tion and temperature on the model output. Ruelland et al. (2014)

showed that a dataset based on a basic, constant lapse rate of

−6.5 °C/km for temperature and no altitudinal effects for precipitation

is sufficient to accurately simulate the discharge regime of the catch-

ment over the last 30 years at a daily time step. Indeed, through a cal-

ibration procedure, the hydrological model is able to compensate for

the differences (or errors) between the considered input datasets,

remaining relatively insensitive to volumetric and spatial differences.

3.2 | Performance and efficiency of conceptual
lumped models

The performance of the models (i.e., GR1A and GR2M) was evaluated

by an efficiency criterion consisting of two primary statistical scores

considered as the basis for a careful hydrological evaluation (Thirel

et al., 2015): the Nash–Sutcliffe efficiency (NSE) criterion (Nash &

Sutcliffe, 1970) and the associated bias. NSE is related to the capacity

of the model to simulate the general shape of the hydrograph. It

assigns more weight to high flows (simulated runoff and observed run-

off expressed as Qsim and Qobs, respectively). Bias is defined as the bal-

ance between the accumulated simulated volume (Vsim) and the

accumulated observed volume (Vobs) over an evaluation of n‐months.

The two criteria are shown in Equations 3 and 4 as follows:

NSE ¼ 1 −
∑n

t¼1 Qobs tð Þ−Qsim tð Þ
� �2

∑
n

t¼1
Qobs tð Þ−μQobs

� �2 ; (3)

Bias ¼ ∑n
t¼1 Vsim tð Þ − Vobs tð Þ

� �
∑n

t¼1Vobs tð Þ
: (4)

Perfect agreement between the observed and simulated runoff

yields a NSE efficiency of 1, whereas a negative value represents a

lack of agreement worse than if the simulated values were replaced

with the observed mean values. Following Moriasi et al. (2007), a

model simulation is judged satisfactory here if NSE is above 0.5, which

is in line with recommendations for modelling under data scarcity con-

ditions (Yanto, Rajagopalan, & Kasprzyk, 2017) at a monthly time step

(Bock, Hay, McCabe, Markstrom, & Atkinson, 2016). However, prior

experience in the study area suggests that such a NSE range would

be based on a catchment with significant water balance disparity and

anthropogenization (Rau et al., 2018).
Based on the model performance evaluation with NSE, we

established that the associated bias should be around 0% within a

maximum range of −40% to 40%. The optimization of the parameters

was done using the Generalized Reduced Gradient (GRG2) method

(Lasdon & Smith, 1992) considering a warm‐up of 2 years in both

models.

The model efficiency was evaluated following a DSST scheme

(Klemeš, 1986) in order to test the model over contrasted climatic

periods, in terms of precipitation, as the dry (DY) and wet years

(WY) over the 40‐year simulation period (1970–2010). Thus, two sub-

periods of equal length (20 DY and 20 WY) were defined according to

median annual precipitation over the period. The entire evaluation

scheme proposed here is shown in Figure 3. It follows two pairs of cal-

ibration and validation (Calibration ↔ Validation) and is tested with a

defined efficiency threshold in two steps as follows: DY → WY, first

the model is calibrated over DY and then validated over WY (orange

arrows in Figure 3), which allows to test if the hydrological model cal-

ibrated over a given period is able to simulate streamflow with a sim-

ilar efficiency for another period when streamflow differs dramatically.

Then, the same procedure is done for WY → DY (green arrows in

Figure 3) in order to find a potential set of calibrated and validated

parameters over the two pairs according to NSE and associated bias.

These sets of parameter values are kept for representing a type of

modelling uncertainty that arises from parameter variability under

nonstationary conditions as climatic contrasted conditions. This means

that a major uncertainty is obtained when unsuccessful validation

tests appears that define a time series envelope. Additionally, the

values are used for posterior regionalization procedure. The DSST

methodology represents the most frequently used method for the

diagnosis of model stability and the described evaluation of cross‐

calibration and validation over contrasted periods. Furthermore, it pro-

vides an approach for temporal transposability of the model parame-

ters over climate‐contrasted periods (Ruelland et al., 2015; Thirel

et al., 2015).

3.3 | RRM and freshwater estimates

In order to obtain regional unimpaired runoff signatures along the

study area (i.e., 49 catchments with semi[arid] characteristics), the

seven unimpaired gauged catchments were used to provide informa-

tion (i.e., parameter values) for the other 42 catchments. Parameter
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values mainly refer to precipitation–runoff relationships that can be

represented with a hydrological model (e.g., GR2M), linked through

a statistical regression method for predicting annual runoff in

ungauged basins (Blöschl, Sivapalan, Wagener, Viglione, & Savenije,

2013).

Multiple linear regressions methods search the relationship

between runoff (including hydrological models parameters) and physi-

cal catchment characteristics (PCC; Castiglioni et al., 2010; Ibrahim

et al., 2015; Peel, Chiew, Western, & McMahon, 2000; Wale et al.,

2009). According to Wale et al. (2009), PCC can be divided in five

groups: climate, geography and physiography, geology, soil cover con-

ditions, and land cover conditions. However, the final parameter selec-

tion is always restricted to the available information. We established

the following equations:

Xj ¼ ∑
n

i¼1
aiPCCi þ b; (5)

Xj ¼ ∑
n

i¼1
ai ln PCCi þ b; (6)

lnXj ¼ ∑
n

i¼1
ailnPCCi þ b; (7)

where Xj represents the parameters set with order j of the hydrological

model (e.g., X1 and X2 for the GR2M obtained via a DSST scheme fol-

lowing Figure 3 after successful validation procedure); ai the regres-

sion coefficient of the PCC number i; b is a constant or intercept of

the regression line; and n is the number of donor catchments (seven

in this study). Equations 5, 6, and 7 represent regional relationships

of GR2M parameter values. These sets of parameter values fed into

a rainfall–runoff model build the regional runoff model (hereafter

RRM). The validation and final selection of the RRM was guided by

the highest multiple correlation coefficient. A limitation of the regres-

sion methods is that they may capture relationships that are evident in

the data but without theoretical explanation, for example, due to the

coevolution of vegetation, landscape, and hydrological response

(Blöschl et al., 2013). However, considering our expected goals of esti-

mating unimpaired freshwater at the regional scale, its application can

be judged as acceptable as long as the hydrological model shows good

transposability under the DSST scheme. The selected RRM was cali-

brated and validated following the same DSST scheme (described in

Section 3.2, see Figure 3) with DY ↔ WY pairs over the donor catch-

ments as if they were ungauged catchments.

The RRM is then used to estimate monthly and annual runoff

series for the 49 catchments of the study area. As Figure 1a depicts,

the gauge stations for the seven studied catchments are located

mainly in the lower and middle altitude of the basin (but not in the

catchment outlet to the ocean). Therefore, the extension to the ocean

through the RRM potentially represents the best method to generate

a reference point for studying unimpaired runoff over the Pd. Thus,

the common method of only summing up river discharge in available

hydrological stations along the coast is discarded.
4 | RESULTS

4.1 | Hydrological monthly regime

Monthly precipitation and runoff analysis of seven selected catch-

ments over the entire study period (1970–2010) highlight a consider-

able scatter within the 40‐year datasets (see scatter plots in Figure 1)

and a seasonal regional behaviour (see mean seasonal hydrographs in

Figure 1). Nevertheless, the data exhibits a well‐defined annual cycle,

indicating an increase of runoff with high precipitation during wet

months from November to May and a gradual decrease during the

dry months of July and August. In nearly all studied catchments, the

data consequently show an annual anticlockwise hysteresis loop, as

a result of the non‐linear rainfall–runoff relationship, regardless of

the geology, presence of glaciers, and snow cover. This suggests that

precipitation is temporarily stored within the basins and not directly

transferred to the river during the wet period whereas the storage

compartment is drained during the early dry period.

At an annual time step, according to Lavado et al. (2012) and Rau

et al. (2018), catchments in the study area generally follow a north–

south gradient of decreasing mean annual precipitation and evapo-

transpiration as shown in Table 1.
4.2 | Efficiency of the GR1A and GR2M models

The GR1A model was applied at annual time step following the DSST

scheme defined in Section 3.2. In general, the DY → WY pairs match

with satisfactory values of NSE around 0.7 and associated bias

reaching values around 0% in northern catchments, such as Piura

(n°1) and Casma (n°2). Nonetheless, the pair match does not indicate

a satisfactory performance over the rest of the central and southern

catchments. The WY → DY pair shows a good agreement only for

Casma (n°2), whereas all other catchments show a very low efficiency

with values, which are negative for NSE and out of the acceptable

range for bias, as shown inTable 2. In Equation 2, the X parameter rep-

resents a compensation of water balance errors due to differences

between forcing and control data. According to Perrin, Michel, and

Andréassian (2007), this parameter could be interpreted as the

fraction of evapotranspiration related to the influence of an external

basin outlet. The latter refers, for example, not to an atmospheric

outlet but an exchange with deep groundwater or with adjacent basins

in the case of a nonsuperposition of topographical and geological

boundaries. Our results explain the contrasted difference between

dry and wet years in semiarid conditions at interannual timescale.

Additionally, the highlight the regional behaviour with a tendency to

gain water in the northern catchments defined by the X parameter

(<1; see Table 2).

Figure 4 shows the transposability of the GR2M parameters set

from DY to WY (colour shading) obtained via a kriging interpolation,

and Table 3 provides the efficiency values for the DSST scheme

DY ↔ WY. In general, the DY → WY pairs match with NSE reaching

high values around 0.80 (see Figure 4a,c and Table 3) and with associ-

ated biases within the acceptable range (see Figure 4b,d) for the seven

selected catchments. However, calibration over DY shows a low NSE



TABLE 2 GR1A performance and mean annual runoff values for dry (DY) and wet (WY) years following the DSST scheme DY ↔ WY

DY → WY WY → DY

Robs (mm/year)

X

NSE (Bias%) Rsim (mm/year)

X

NSE (Bias%) Rsim (mm/year)

n° DY WY Calibration DY Validation WY DY WY Calibration WY Validation DY DY WY

1 26 345 0.66 0.51 (20) 0.69 (−29) 31 247 0.46 0.86 (2) −0.10 (12) 58 357

2 102 321 0.63 0.70 (2) 0.71 (−4) 101 303 0.57 0.73 (4) 0.58 (16) 114 330

3 40 109 0.74 0.50 (~0) 0.10 (40) 38 153 0.94 0.54 (3) 0.12 (−33) 26 112

4 65 173 0.81 0.20 (−3) 0.09 (4) 60 175 0.87 −0.20 (−3) 0.06 (−13) 54 163

5 57 127 0.84 0.61 (1) 0.10 (49) 58 179 1.15 0.22 (−1) 0.14 (−39) 5 21

6 99 175 0.58 0.46 (−2) 0.12 (45) 96 254 0.87 −0.19 (−3) −0.30 (−44) 55 171

7 51 113 0.94 0.30 (−5) 0.21 (27) 48 142 1.13 0.60 (~0) −0.19 (−30) 35 112

Note. Observed runoff at gauging station (Robs); Simulated runoff (Rsim). Satisfactory results are shown in italic rows. DSST: Differential Split‐Sample Test;
NSE: Nash–Sutcliffe efficiency.

FIGURE 4 Evaluation of the performance of the GR2M model (catchments in numbers) via parameter transposability (DSST). (a) NSE for the
calibration over dry years (DY). (b) Idem for the bias. (c) NSE for the validation over wet years (WY). (d) Idem for the bias. (e) GR2M
parameters values (X1 and X2) within the calibration envelope over DY and WY. DSST: Differential Split‐Sample Test; NSE: Nash–Sutcliffe
efficiency
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value of 0.40 for the southernmost catchment of Tambo (n°7) and pre-

sents an underestimation of observed runoff in all cases (see negative

biases in Figure 4b). The validation over WY also shows low values of

NSE of 0.40 for Casma (n°3) and Camana (n°6). Additionally, the

WY → DY pairs show a low efficiency with NSE values below 0.40,

and biases are out of range for the validation over dry years. The

GR2M parameters set are shown in Figure 4e for the extreme case

of calibration over DY and WY, which also envelope the parameters

set for other scenarios as considering the entire or half of the period
for calibration. The envelope shows large variability for X1 values,

except for catchments n°4, n°5, and n°7. However, these values are

particularly low, corresponding to semiarid characteristics over the

seven catchments. X2 shows a relatively stable behaviour around 1,

which is within the range of values of the theoretical estimate

(0.2–1.3; Perrin et al., 2007).

Table 4 provides the mean monthly values of the S′ soil reservoir

and the R′ exchange water reservoir for the DY↔WY scheme. S′ pre-

sents highest values in southern catchments (n°6 and n°7) and very



TABLE 3 GR2M parameters set and efficiencies over dry (DY) and wet (WY) years following the DSST scheme DY ↔ WY

DY → WY WY → DY

n° X1
(mm) X2

NSE (Bias%)
X1
(mm) X2

NSE (Bias%)

Calibration DY Validation WY Calibration WY Validation DY

1 237 0.87 0.68 (−7) 0.68 (−33) 397 1.11 0.72 (−14) 0.60 (78)

2 185 1.09 0.82 (2) 0.54 (19) 494 1.08 0.73 (−7) 0.58 (−28)

3 135 0.97 0.66 (−6) 0.41 (40) 361 0.95 0.73 (−1) 0.33 (−51)

4 22 0.60 0.67 (−16) 0.68 (−19) 16 0.62 0.70 (−7) 0.63 (6)

5 109 0.71 0.67 (−16) 0.49 (18) 175 0.64 0.64 (−16) 0.53 (−50)

6 331 1.14 0.61 (−4) 0.40 (39) 739 0.99 0.71 (−1) 0.32 (−46)

7 194 0.78 0.41 (−36) 0.68 (~0) 143 0.66 0.73 (−19) 0.36 (−48)

Note. Satisfactory results are shown in italic rows. DSST: Differential Split‐Sample Test; NSE: Nash–Sutcliffe efficiency.

TABLE 4 Mean monthly values of S′ and R′ reservoirs for dry (DY) and wet (WY) years following the DSST scheme DY ↔ WY

DY → WY WY → DY

S′ (mm/month) R′ (mm/month) S′ (mm/month) R′ (mm/month)

n° Catchment DY WY DY WY DY WY DY WY

1 Piura 20 39 7 16 44 86 12 20

2 Chicama 28 40 16 22 106 153 15 22

3 Casma 16 24 11 17 64 102 8 16

4 San Juan ~0 ~0 9 13 ~0 ~0 11 14

5 Acari 13 19 8 13 30 42 6 11

6 Camana 81 114 16 22 199 274 13 21

7 Tambo 41 57 8 13 26 36 7 11

Note. Valid results are shown in italic rows according to Table 3. DSST: Differential Split‐Sample Test.
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low values for central catchments (n°3, n°4, and n°5) for a calibration

over DY and validation over WY. This is related to the geological con-

ditions of the study area. Whereas the southern catchments offer less

impervious conditions for water storage than the northern regions, the

central catchments are clearly influenced by the impervious batholith.

Here, mean values over WY are around ~0 mm/month for San Juan

(n°4), 24 mm/month for Casma (n°3), and 19 mm/month for Acari

(n°5). R′ values remain nearly constant and are generally lower than

S′ values.

Runoff modelling results at monthly scale are shown in figures

later as Figure 7. DY ↔ WY pairs are represented as runoff uncer-

tainties in blue colour. The catchments n°3 and n°6 indicate high

uncertainty, and flows outside the uncertainty bounds for catchments

n°1 and n°4 are corroborating the efficiency and GR2M model perfor-

mance in comparison with observed runoff in gauged stations.
4.3 | RRM evaluation

The seven studied catchments present a regional behaviour related to

the parameter set transposability from dry to wet years in all catch-

ments and also related to the tendency to gain water in the northern

catchments at interannual timescale. The results provide an overview

of the monthly hydrological response along the study area, as well as

the selection of a valid PCC set. The PCC is mainly related to physical

(nonclimatic or nonatmospheric) characteristics and exchange with

soils and adjacent basins. Equations 5 to 7 yield the best set of PCCs:
Area (A), main channel longitude (L), and perimeter (p). Figure 5 reveals

the significant linear relationship between X1, X2 and A, L, and p.

Equation 7 provides the best RRM with a linear multiple correla-

tion coefficient of 0.82 for X1 (a significant relationship) and 0.43 for

X2 (a weak relationship). Equation 8 is expressed as a potential repre-

sentation as follows:

X1 ¼ A0:393L−4:107p4:291

64:5
; X2 ¼ 0:883A0:369L−0:229p−0:168: (8)

It is worth mentioning that X1, which is related to a soil reservoir, can

also be considered as a buffer reservoir modulating the concentration

time. Furthermore, it is easily explained by the geomorphology index

of compactness (i.e., Gravelius's shape index) based on A and p. L is

considered as a reference of the locations where the mentioned

exchanges become important due to the geological characteristics

(see Section 2.1). As far as X2 is related to water exchange with

neighbouring catchments, it cannot be easily explained with A, L, and

p. This parameter is judged for its ambiguity (between its natural and

statistical meaning) as a correction factor (Mouelhi et al., 2006a). If

X2 is less than 1, there is a water loss from the outside of the catch-

ment; otherwise, there is a gain. However, X2 values did not reach a

large range (i.e., from 0.6 to 1.1 in Table 3), and by theory, X2 does

not control the GR2M response to precipitation events, nor it controls

the simulated runoff variability to a certain extent as X1 does (Huard &

Mailhot, 2008). We suggest that our equations could provide an initial

parameter set for its use at subbasin scale. The parameter X1 reflects



FIGURE 5 Linear associations between physical catchment characteristics (A: area; L: main channel length; p: perimeter) using a natural
bilogarithmic scale (a) for the X1 parameter and (b) for the X2 parameter
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the modelled storage dynamics. Therefore, it is necessary to compare

X1 with field observations of groundwater table variations, as done by

Andermann et al. (2012) through a modified GR2M model. For other

semiarid areas in the world, an increase of effective evapotranspira-

tion losses over wet months, associated increase of infiltration, and

consequently, a relative reduction in runoff was documented before

(Hughes, 2008). These findings cannot be further investigated within

this study due to data scarcity and its regional focus.

Then, the RRM from Equation 8 was evaluated over each of the

seven gauged catchments as ungauged systems. This evaluation also

considers the efficiency criteria with respect to the observed runoff.

Figure 6 shows the values of NSE and the associated bias with the

regional DSST scheme based on the calibration over dry years and val-

idation over wet years. NSE presents high values around 0.70 and bias

values within the range of −40% to 30%. Low efficiency was observed

in the southernmost catchment of Tambo (n°7) with a NSE of 0.4 for

the calibration over DY (see Figure 6a,b). For the validation over

WY, a low efficiency with a NSE value of 0.30 for Casma (n°3) was

identified (see Figure 6c). X1 adopts low values, as expected for the

semiarid conditions. X2 is reduced to values below 1, mainly over

catchments n°3, n°4, and n°5 with values below 0.9. This might be

an indicator that these catchments, which cover much of the Andean

batholith (see Figure 1), are characterized by more pronounced water
FIGURE 6 Performance of the regional runoff model (catchments in num
over dry years (DY). (b) Idem for the bias. (c) NSE for the validation over we
NSE: Nash–Sutcliffe efficiency
loss than the rest of catchments. This finding was also observed for

the GR2M evaluation (see Figure 4) for catchments n°4 and n°5.

Figure 7 shows the synthesis of our calculations with the DSST

scheme. The contrasted hydrological behaviour over dry (seasonal pre-

cipitation in orange) and wet years (seasonal precipitation in green)

and the observed hydrological response (in black lines) are reflected

in the difference of simulated runoff (light blue colour). This uncer-

tainty results during contrasted evaluation via the DSST (DY ↔ WY),

mainly in wet months from January to April. This is explained by the

low model efficiency mainly for Casma (n°3) and Camana (n°6) catch-

ments with a NSE around 0.40 and bias around 40% (see Table 3 and

Figure 4). It also highlights that dry months from June to November do

not present major uncertainty.

Simulated runoff by the RRM (in red dashed lines) follows the sea-

sonality of observed precipitation and runoff. Simulated DSST

contrasted runoff (in light blue colour) shows a time lag of +1 month

(e.g., a peak on March instead of February) with respect to the

observed runoff in Camana catchment (n°6). Additionally, over north-

ern catchments, the recession limb of the seasonal hydrograph is not

well represented. This is explained by the effect of the hysteresis loop

described in Section 4.1 mainly in those catchments where conditions

prevail for a transient water storage during wet months and its release

over dry months (see catchments with high values of S′ reservoir in
bers) via parameter transposability (DSST). (a) NSE for the calibration
t years (WY). (d) Idem for the bias. DSST: Differential Split‐SampleTest;



FIGURE 7 Mean seasonal runoff (observed, uncertainty by DSST, simulated by the regional runoff model) and precipitation over dry (DY) and
wet (WY) years for each catchment. Calibration over DY and validation over WY considering a hydrological year (September to August)
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Table 4). However, despite of the differences between reconstructed

dry and wet years over the entire study period shown in Figure 7 and

Figure 8, simulated runoff corresponds to acceptable model efficien-

cies. This can be stated due to good agreement of NSE and associated

bias (Figure 6), additionally considering the meaningfulness of the

extreme contrasted climatic evaluation of the DSST. A noteworthy

case of very well simulated runoff in any condition at mean seasonal

level represents San Juan (n°4). This catchment presents low uncer-

tainty over wet months and RRM performance that can be related to

its homogenous hydroclimatic conditions. RRM overestimates runoff

over most wet month peaks, which contributes to the low model effi-

ciency mainly in catchments n°3, 6, and 7 (see Figures 6 and 8).
4.4 | Freshwater runoff estimation

Figure 9 shows RRM outputs expressed in terms of mean annual spe-

cific runoff and annual runoff time series along the 49 catchments for

unimpaired conditions for the 1970–2010 period. Water scarcity in

the Pd is quantified at outlet points close to the Pacific Ocean indicating

runoff values expressed as water yields between 0.1 and 13.0 L/s/km2.

Themaximum value of 13 L/s/km2 corresponds to the Santa catchment

(catchment n°13 in Figure 9a), whereas very low values (catchments in
red colour) can be observed in the southern region. Figure 9b–f show

the annual runoff for all catchments (grey shading area). For clarity,

catchments were grouped following the general geographical classifica-

tion proposed by de Reparaz (2013) in terms of river regime and geo-

morphology (i.e., pluvial, nivo‐glacial‐pluvial, torrents and brooks) in

the study area. Figure 9b groups the northern rivers into a pluvial

regime. Then Figure 9c groups northern central rivers and torrents into

a snow‐pluvial and glacial‐pluvial regime with the presence of natural

lakes, such as the Santa catchment (n°13 in Figure 9a) whose upper part

covers a glaciated mountain range. Figure 9d groups central rivers as

pluvial regime and moderated glacial regime with the presence of natu-

ral lakes. Furthermore, Figure 9e groups torrents and brooks into a plu-

vial regime with high aridity conditions, such as the complex Grande

catchment (n°35 in Figure 9a) whose lower part belongs to an extensive

desert plain. Finally, Figure 9f groups all southern rivers and abrupt tor-

rents with volcanic origin. Average annual runoff (black dotted line) in

each group also follows a regional hydroclimatic pattern with the pre-

dominance of peak flows during ENSO years. This can be observed

for extreme El Niño events in 1982/1983 and 1997/1998 over north-

ern catchments. In contrast, low values predominate in southern catch-

ments during the 1982/1983 event.

Our unimpaired freshwater runoff estimate is the first approach in

the study region and it was obtained as the total regional water flux



FIGURE 8 Runoff simulations along dry (DY)
and wet (WY) years. Observed and simulated
monthly runoff by GR2M and the regional

runoff model (RRM). Runoff uncertainty via
Differential Split‐Sample Test (DSST)
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obtained summing up all monthly time series. The total annual mean

for the 1970–2010 period corresponds to 747 and 709 m3/s without

considering the ENSO extremes events of 1982/1983 and 1997/1998

(see Table 5 and Figure 9g). It was consistent with other estimations

done in the region that only considered observed records at gauge sta-

tions, such as is listed in ANA (2012), as follows: ELECTROPERU in

1975 (1025 m3/s/year), ONERN in 1980 (855 m3/s/year), CEDEX in

1992 (924 m3/s/year), and ANA in 2012 (802 m3/s/year). Our results

and previous studies might provide evidence for long‐term decrease

of water availability in the Pd. Nonetheless, discontinuities of the

observed records and the differences of study periods within all esti-

mates does not allow for a firm conclusion. However, for unimpaired

conditions, the associated time series present a significant positive

trend of 43 m3/s per decade based on a Mann–Kendall test at 95%

of confidence level with a 5‐year mean running for the scenario with-

out ENSO extreme events, as shown in Figure 9g. The regional trend is

mainly driven by northern and central catchments (no trend was

obtained for the southern catchments plotted in Figure 9f). This can

be explained by the effect of significant precipitation increase in

northern region (Rau et al., 2017), as well as with the potential effect of

snow and glacier melting due to increasing mean temperature around

0.2 °C per decade over the study area in the last four decades (Rau et al.,

2018). The low values of annual modules for our unimpaired estimation
is likely to be related with effects of water increase by the large hydraulic

systems along the study area since the 1970s (Rau et al., 2018). The

resulting regional discharge of 709 m3/s was compared with earlier

estimations from 1980 byMilliman and Farnsworth (2011) who estimate

a discharge of 665 m3/s from gauge stations that lies at the lower 95%

confidence interval of our estimates (589–906 m3/s).
5 | DISCUSSION

5.1 | Seasonal precipitation–runoff relationship

The mechanisms explaining the anticlockwise hysteresis relationship

found between seasonal precipitation–runoff are not sufficiently doc-

umented over the study area. We suggest here some relationships

between hydrologic variables as follows: snow and ice potential melt

runoff represents ~14% and less than 1%, respectively, of annual

mean distributed runoff located mainly over central and southern

parts of the upper Pd (Mernild et al., 2016). Release of water by snow-

melt generally reaches its peak over wet months, which is not consis-

tent with the anticlockwise nature of the hysteresis. Release of water

by ice melt peaks over dry months (Condom et al., 2012; Mernild et al.,

2016) and is consistent with the hysteresis effect. However, given the



TABLE 5 Mean values of regional discharge

Regional discharge Including ENSO extreme years Excluding ENSO extreme years

Mean (m3/s) 747 709

Minimal (m3/s) 136 136

Maximal (m3/s) 1,876 1,358

SD (m3/s) 375 322

Trend (m3/s per decade) +58 +43

Note. ENSO: El Niño Southern Oscillation; SD: standard deviation.

FIGURE 9 Spatial distribution of ungauged freshwater runoff (1970–2010) estimated by the RRM over 49 main catchments of the Pd: (a) Mean
annual specific runoff by catchment. (b–f) Annual time series grouped in function of the regime characteristics. (g) Total annual discharge reaching
709 m3/s. ENSO: El Niño Southern Oscillation; RRM: regional runoff model
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low representativeness of ice melt runoff, it can be considered as neg-

ligible. This suggests that snow and ice melt runoff could be discarded

as the main mechanisms explaining hysteresis. We can also note that
hysteresis occurs even over nonglacierized and nonsnow covered

catchments, such as Piura (n°1) and Chicama (n°2). In the same way,

evapotranspiration reaches maximum values in the wet months from



32 RAU ET AL.
December to March. This could qualitatively explain the hysteresis

effect mainly in the Piura (n°1) and San Juan (n°4) catchments,

identified by Rau et al. (2018) as water‐balance‐sensitive to both

precipitation and evapotranspiration. Finally, the main mechanism

explaining the hysteresis effect is probably associated to a transient

storage of water in a groundwater unit during the early wet season

with increased flow during the whole wet season and early dry season.

This behaviour is well illustrated by mean seasonal hydrographs and

lithologic composition of catchments (Figure 1). Consequently,

catchments located outside of the quasi‐impervious batholith present

a broad hysteresis effect (catchments n°1, n°2, n°6, and n°7), which is

corroborated with the extension of their recession limbs above zero

runoff. Catchments located mainly inside the batholith (n°3, n°4,

and n°5) also present the hysteresis effect but with small amplitude.

This highlights the relevance of transient water storage, which

at unimpaired conditions is the main source of recharge of alluvial

coastal aquifers at lowlands by way of infiltration from river beds

(Gilboa, 1971).

There is still a lack of studies and proper instrumentation for separat-

ing the runoff contribution from rainfall, ice and snow melt, evapotrans-

piration, and groundwater over mid and low lands (i.e., at the studied

gauge stations). Further research should consider the impacts in

streamflow evolution of current regional warming and the change of veg-

etation cover in the study area (Rau et al., 2018).
5.2 | Regional hydrological modelling in a context of
data scarcity

Our calibration and validation of the GR1A and GR2M models offered

a profound insight into regional runoff behaviour related to their

parameter transposability from dry to wet years. Thresholds for vali-

dating the model efficiency criterion have been defined considering

a data scarcity scenario (see scheme in Figure 3). In most cases, model

efficiency has been successfully validated. Using the DSST method, a

two‐parameter model (i.e., GR2M) resulted more robust than a

single‐parameter model (i.e., GR1A). As mentioned in Mouelhi,

Madani, and Lebdi (2013), by using standard methods of calibration

and validation (e.g., Split Sample Test [SST]), there is not a general rule

regarding the relationship between model robustness and complexity

at monthly and annual time step. Further research on conceptual

modelling in our context is needed, concerning the relationship of

model robustness versus model structure and complexity. Additionally,

it is known that most of lumped models have a lower performance in

reproducing well the hydrological balance in arid regions compared

with humid regions (Bai, Liu, Liang, & Liu, 2015; van Esse et al.,

2013). Therefore, we conclude that the Pd, typically characterized by

semiarid conditions and data scarcity, offers an extreme scenario for

testing transposability via DSST.

This paper also presents the application of parameter regionalization

of GR2M rainfall–runoff model for quantifying freshwater in the Pd.

According to other studies at finer time steps, the regression method

approach mostly shows rather low correlations (Merz & Blöschl, 2004);

however, at coarse time steps, it would provide slight improvements

(Ibrahim et al., 2015; Vandewiele & Elias, 1995). Kuczera and
Mroczkowski (1998) and Bock et al. (2016) suggest that a considerable

part of the problem in regression models and regionalization is related

to model parameter uncertainty and interactions. Parameter uncertainty

depends on the studied catchments, data aspects, and the model struc-

ture, whereas models withmore parametersmay lead tomore parameter

interactions and a situation of equifinality (Bock et al., 2016). The

approach used in our research is different from previously applied

methods. The regionalization was carried out by founding the relation-

ship between the catchment characteristics and the model parameters

for contrasted conditions via the DSST method. Then, calibrating the

model in the studied catchments as ungauged systems, a good agree-

ment of the regional model efficiency could be found.
5.3 | Regional freshwater estimation

From a continental hydrological perspective, considering a total dis-

charge around 26,540 m3/s at the western coast of South America

(Milliman & Farnsworth, 2011), our results corroborate that rivers

along the arid Peruvian coast contribute with very little freshwater

to the ocean. Nevertheless, the advantage of having unimpaired time

series through a RRM is its usefulness in identifying long‐term rela-

tionships with climate variability and climate change impacts and its

application for water management purposes. Even if the RRM would

present a weak relationship for X2 in Equation 8, this would not be

decisive as the parameter plays only a correcting role for runoff time

series generation (see Section 4.3). We could further express the run-

off as anomalies (i.e., normalized indices) of monthly and annual vari-

ability (e.g., using a standard score), as a very useful tool for climate

variability and change studies.
6 | CONCLUSIONS

This study proposed a methodology for estimating unimpaired fresh-

water runoff from Peruvian Pacific catchments based on hydrological

modelling via two conceptual lumped models (GR1A and GR2M). They

were evaluated via a DSST in order to cope with the temporal

transposability of model parameter sets and modelling robustness over

contrasted climate conditions. Therefore, dry and wet year periods

were considered according to the arid and semiarid conditions of the

study area. This methodology allowed for establishing a RRM via the

GR2M model at monthly time step over seven selected catchments.

Our results show that the GR2M indicate higher robustness than

the GR1A model over contrasted climatic conditions in terms of

acceptable NSE and bias criteria. The seven unimpaired selected

catchments presented a remarkable hydrological regional monthly

behaviour related to the transposing of their parameters set from

dry to wet years, as well as their behaviour of gaining water at annual

time step over northern catchments. The GR2M parameter set (i.e., X1

and X2) was linked with PCC (e.g., the area, main channel length, and

perimeter), which are geomorphological indices with a good relation-

ship for the soil reservoir described by the X1 parameter. An accept-

able multiple linear regression was established between these

parameters and the associated RRM that was satisfactorily validated

considering the seven selected catchments as ungauged systems.
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The RRM was applied over 49 catchments along the study area in

order to simulate runoff for unimpaired conditions at outlet points

close to the Pacific Ocean.

In general, the RRM and GR2M outputs reveal some deficiencies

over the northern catchments of the Pd where the recession limb from

mean seasonal hydrograph was not well reproduced. This can be

explained by the effect of the hysteresis loop between precipitation

and runoff found in all catchments, which after some discarded

hypothesis, could be mainly related to a transient storage in river beds

during wet months and its release over dry months. Furthermore, the

influence of geologically impervious conditions (i.e., Andean batholith)

on the soil model reservoir was corroborated.

To our knowledge, unimpaired freshwater runoff was assessed for

the first time in the Pd. A total mean discharge of 709 m3/s was esti-

mated for the whole 1970–2010 period. This discharge presented a

trend of +43 m3/s per decade (significant at the 95% of confidence

level based on a Mann–Kendall test) over the whole period without

considering the ENSO extreme events of 1982/1983 and

1997/1998. Output runoff time series via the RRM were objectively

reproducible, because their bias was minimized by the multiple linear

regression method, and uncertainty associated with them can be quan-

tified under clear assumptions including geomorphologic parameters. A

limitation of the methodology is related to the application of the RRM

in other spatial scales. Our proposed equations are mainly restricted

to the size of evaluated catchments and for its use at regional scale.

Based on the good relationship found for the X1 parameter that con-

trols the runoff variability in the GR2M model, we suggest that RRM

outputs as runoff anomalies would offer a useful tool for hydroclimatic

studies. The regional hydrological knowledge of the study area acquired

via conceptual parsimonious lumped models represents a first step to

expand the use and development of hydrological models at basin and

regional scale over the Peruvian Pacific drainage region.

Future work will be dedicated to further investigate the runoff

sensitivity to climate variability and change and to ENSO–runoff rela-

tionship based on our unimpaired time series as valuable indices that

are not significantly disturbed by direct human activities on a long‐

term hydrological record. This would require improvements of the

RRM for other spatial scales.
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