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Abstract
The need to generate objective evidence and reliable information for decision makers to improve environmental policies for 
a better air quality, led us to evaluate the atmospheric aerosol components in the urban area of Carabayllo, by monitoring 
 PM2.5 and  PM10 to determine mass concentration and analyzing  PM10 using k0-INAA and ICP–MS for metals quantification, 
ion chromatography for anions and the NIOSH method to determine organic and elemental carbon. The results obtained from 
mass concentration of  PM2.5 and  PM10 exceeded the permissible breathing annual average of WHO guidelines of 15 µgm−3 
and 45 µgm−3, respectively, which evidence an unhealthy air quality. Likewise, using the model Positive Matrix Factorization 
five sources of pollutants were defined: metallurgical industry, sea salt, industrial activity, dust and non-exhaust emissions 
and vehicle emissions.
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Introduction

As it is well known, aerosols or particulate matter, PM, are 
solid or liquid, larger than a molecule but small enough to 
remain suspended in the atmosphere [1]. The origin of PM 
is due to natural or anthropogenic sources, being the last 
ones considered pollutants. The composition of unpolluted 
air is nitrogen 78% by volume, oxygen 20.95%, argon 0.93% 
and carbon dioxide 0.032%. These four components make 
99.99% clean, dry air. Another major component of clean 
air is water, which is found in varying amounts. Depending 

on temperature and evaporation rate from available water 
sources, it ranges from 1 to 3%. The minor components are 
numerous and several of them come from various natural 
processes.  H2S,  SO2 and CO are released into the atmos-
phere by volcanic activity. The putrefaction of plants and 
animals under conditions where there is no oxygen pro-
duces  CH4,  NH3 and  H2S. Nitrogen oxides  (NO2, NO) are 
produced by electrical discharges during storms and tons 
of CO are generated in forest fires [2]. The size of the PM 
matters and it range from 0.001 to 100 µm in diameter and 
the shape of aerosols range from spherical to quite irregu-
lar, e.g. fume and dust which are solid PM, range between 
0.0001–1 µm and 1–10,000 µm, respectively. Mist and spray, 
approximately between 0.01–1000 µm and 10–10,000 µm, 
respectively [3]. There is a clear, available and sustained 
evidence of the risk to human health and the ecosystems by 
high concentrations of PM [4]. Atmospheric particles con-
tain inorganic ions, metallic compounds, elemental carbon, 
organic compounds, and crustal compounds. Primary par-
ticles are emitted directly from sources; whereas secondary 
particles are formed from gases through chemical reactions 
in the atmosphere involving atmospheric oxygen  (O2) and 
water vapor  (H2O); reactive species such as ozone  (O3); radi-
cals such as the hydroxyl (COH) and nitrate  (CNO3) radi-
cals; and pollutants such as sulfur dioxide  (SO2), nitrogen 
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oxides  (NOX), and organic gases from natural and anthro-
pogenic sources [5]. Two types of PM are mostly evaluated, 
fine particles less than 2.5 µm in diameter  (PM2.5) and coarse 
particles, less than 10 µm in diameter  (PM10), both can 
cause health problems ranging from respiratory problems, 
chronic diseases, lung cancer, pneumonia to reaching the 
bloodstream and entering the cardiovascular system, being 
responsible for neurological disorders and cardiovascular 
accidents. There is even evidence that long-term exposure 
would affect the immune system making it susceptible to 
any type of respiratory disease, including COVID-19 [6].

Good air quality in megacities should be a priority issue 
to be considered and routinely assessed in order to imple-
ment environmental strategies, improve legislation and pre-
vent health and climate change problems. The last WHO 
global air quality guidelines (2021) [7] recommend the tar-
get values of 15 µg  m−3 and 45 µg  m−3 for  PM2.5 and  PM10, 
respectively; annually and during 24 h, which are values 
more strict than the before ones (2005),  PM2.5 (25 µg  m−3) 
and  PM10 (50 µg  m−3) [8]. However, developing countries 
have higher target values. The air quality standard (ECA, for 
its Spanish acronym) in Peru is 50 µg  m−3 and 100 µg  m−3 
for  PM2.5 and  PM10, respectively [9]. In addition, air quality 
bodies in Peru conduct monitoring of  PM10,  PM2.5, nitrogen 
dioxide, sulphur dioxide, hydrogen sulphide, carbon monox-
ide and ozone, but they do not measure the PM components. 
WHO has highlighted that more than 7 million premature 
deaths are associated with exposure to air pollution and 
could become a public health problem in many countries 
[6], with developing countries being the most vulnerable. 
Peru is one of them and for this reason, the authors decided 
to take action and monitor an urban area, called Carabayllo, 
located in the city of Lima.

The city of Lima concentrates most of the population, 
making it one of the mega-cities of Latin America, where 
approximately one third of Peru's population lives. This 
growth has meant that many of the industries that were once 
located on the periphery of the city are now immersed in 
population centers. Moreover, as published in the National 
Road Safety Strategic Plan 2017–2021 [10], Lima is the 
home of two third of the national vehicle fleet, which has 
increased indiscriminately in the last seven years, unfortu-
nately not in quality and for example, from 2 million 286 
thousand vehicles in 2009 increased to 5 million 244 thou-
sand in 2015.

Particulate matter air pollution has been extensively 
investigate in many countries, like China and USA then, in 
some countries of Europe and quite less in Latin America 
(Scopus data base, number of publications), due to its impact 
on the air quality, human health and climate change [11–17]. 
The studies comprise the determination of chemical compo-
sition of PM after the sampling using high volume samplers 
and quartz filters, low volume samplers and Teflon filters to 

proceed with the analysis of a series of species to, finally 
identify the sources and their contribution to the atmosphere 
and the impacts on air quality.

The objective of this survey was to obtain scientific evi-
dence on the quality of air in the assessed locality and to 
identify possible sources of pollution in order to provide it 
to decision-makers with the aim of improving legislation and 
the quality of life of the inhabitants.

Experimental

Sampling site and sampling campaign

The district of Carabayllo [18] was chosen as the first evalu-
ation site. It has an area of 416 000  km2 and a population 
of 301 878 inhabitants. Its geographical coordinates are 
11° 53′ 24″ South and longitude 77° 1′ 37″ West. It has 
a strategic location with respect to the access routes for 
agricultural products from the highlands and the jungle 
to international shipping points by road or air. Carabayllo 
was a zone of agricultural land, but in 1960 human settle-
ments began to be installed, which continued to expand in 
the uncultivated areas of the foothills and hills, occupying 
agricultural areas, mainly by urban developments. By 1975, 
the district continued to grow in terms of population, with 
invasions and without planning. To date, there are areas in 
the district where the roads have not been paved, a number 
of mechanics' workshops have been set up, and traffic has 
intensified. Samples were collected at the monitoring site 
used by the National Service of Hydrology and Meteorol-
ogy [19], located in an urban area at a latitude of 11° 54′ 7.9 
S and a longitude of 77° 2′ 1″ W, corresponding to 190 m 
above sea level.

Particulate matter sampling started on April 03 2019, 
using a high volume sampler Thermo  Scientific® [20] for 
particles smaller than 10 microns (HV  PM10) and a low vol-
ume sampler Partisol for particles smaller than 2.5 microns 
(LV  PM2.5) Thermo  Scientific® [21]. The first sampler used 
a 203 mm × 254 mm Whatman quartz filters and the other 
used a Whatman 47 mm diameter Teflon filters. In both 
cases, sampling was carried out for 24 h, according to UNE 
guidelines [22] and the filters were replaced every 2 days. 
This criterion was adopted in order to have 10 samples of 
each particulate matter size per month and to provide good 
statistics during the 10-month study. Following the protocol 
of the laboratory, the quartz filters were heated at 600 °C 
for 6 h before being weighed and placed in the sampler to 
ensure that they were free of organic matter. After sampling, 
the quartz filters were removed from the sampler, folded and 
placed between two sheets of paper and packed in an enve-
lope to be taken to the laboratory. The Teflon filters were 
removed from the sampler and placed in their corresponding 
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petri dishes. Transfer to the laboratory was done in storage 
boxes at a controlled temperature of 10 °C.

PM2.5 and  PM10 mass concentrations determination

Eighty-two HV  PM10 samples and ninety-two LV  PM2.5 
were collected. The determination of the mass concentra-
tion was carried out gravimetrically by weighing the filters 
before and after sampling using a Mettler Toledo analytical 
balance, d = 0.1 mg. Each month, a blank filter was taken to 
sampling in order to obtain the field filter. The mass con-
centration result (µg  m−3) is calculated as the difference in 
mass of the sampled and unsampled filter (µg), divided by 
the sample volume, determined as the flow rate  (m3  h−1) 
multiplied by the sampling time (h).

Analytical techniques to species determination 
in  PM10

The quartz filter was divided and cut into sections for spe-
cies analysis:

k0-Instrumental Neutron Activation method: Neutron acti-
vation analysis is a nuclear analytical technique used for 
the identification and quantification of chemical elements 
in different types of matrices. It is one of the most reliable 
techniques for trace element analysis. Among its analytical 
characteristics that apply for this type of study, is that it is 
non-destructive, i.e. the sample does not require dissolution, 
which means that there would be no loss due to incomplete 
digestion or the possibility of contamination by over-han-
dling of the sample [23]. One of the important advances in 
the technique was the development of the k0 method in 1975 
[24], which main advantage is the use of a single compara-
tor, especially when large volumes of samples have to be 
analyzed. It requires a calibration of the irradiation site f 
and α, and the calibration of the detectors determining peaks 
efficiency.

In order to fit the sample inside the irradiation can and to 
define the best geometry for irradiation and measurement, 
the sections of the filter to be analyzed by the k0-method was 
cut it into 30 × 30 mm pieces. Zn standard solutions SRM-
NIST 3168a was used to prepare comparators by depositing 
and weighing approximately 534 µg [25] on 30 × 30 mm 
piece of filter paper Whatman 42. Similarly, a suitable vol-
ume of the mixed Mo–Au–Co solution was deposited on a 
filter paper to obtain the ratio of the thermal and epithermal 
neutron flux rate (f = Φth/Φe), and the deviation of the epi-
thermal neutron flux rate distribution, alpha (α), parameters 
of the irradiation site [26–28].

The samples, comparators and monitors were packed into 
polyethylene bags and placed in a stacked manner inside 
the aluminum can to be irradiated for 4 h in one position of 
the core grid in the RP-10 research reactor of the RACSO 

Atomic Centre of the Peruvian Institute of Nuclear Energy 
(IPEN). The reactor operates at a power of 6 MW. The 
parameters of the irradiation positon were f = 28; α = 0.063; 
the thermal flux was Φth = 3…E13  cm−2  s−1 and the epi-
thermal flux, Φe = 1…E12  cm−2  s−1. After a decay time of 
5 days, a first measurement was performed for 5000 s and a 
second one after 20 days for 20,000 s. The Zn comparator 
was measured for 600 s between 15 and 20 days of decay, 
using a gamma spectrometry system Canberra GC4018, 40% 
efficiency, FWHM = 1.8 keV at 1332.5 keV Co-60 HPGe 
detector. Considering that the sample geometry was differ-
ent from the one used in the laboratory i.e. pellets of 13 mm 
in diameter and 2 mm thickness, a new efficiency curve 
was determined for this new geometry of 30 × 30 mm of 
the sample filter [29]. Gamma spectrum analysis was done 
using Canberra software Genie 2000 and for concentration 
calculation, an in-house developed software application was 
used based on an excel spreadsheet and macros written in 
the Visual Basic for application (VBA) tool from Microsoft 
[30]. Under those conditions the elements Ag, As, Ba, Br, 
Ce, Co, Cr, Cs, Fe, K, Na, Sb, Sc, Rb and Zn were quanti-
fied for this study. Other elements, such as Hg and Se were 
not possible to determine because there were not detected.

The k0 factors used for concentration calculation and 
other relevant nuclear data  (Q0, Êr,  T1/2, isotopic abundance, 
etc.) were adopted from the updated k0 data base 2020.

The quality control of the method was carried out by ana-
lyzing the SRM-NIST 1643 water standard reference mate-
rial. For this purpose, a volume of the solution was deposited 
and weighed on a piece of Whatman 42 filter paper of the 
same geometry as the sample and comparator and the same 
analysis protocol was followed for the measurement and 
calculation of the concentration of the quantified analytes.

Inductively Coupled Plasma–Mass Spectrometry 
(ICP–MS) and Ion Chromatography (IC): For ICP–MS 
analysis, a 44.45  cm2 area of the filter was used, digesting 
the sample with  HNO3 and HCl suprapur quality Merck, 
for metal trace analysis (metal concentration are in the ppb 
range) and using standard multi-element solutions, follow-
ing the recommendations of the Environmental Protection 
Agency [31]. Al, Ca, Cd, Cu, Hg, K, Mg, Mn, Ni, Pb, Ti, Se 
and V were quantified. The anions  F−,  Cl−,  NO3

− and  SO4
−2 

by ion chromatography were characterized taken 22.23  cm2 
of sample quartz filter. The validity of the results analyzed 
by ICP–MS was ensured by the participation in the World-
wide Open Proficiency Test for Analytical Laboratories 
involved in Air Pollution Studies, PTXRFIAEA14, organ-
ized by the International Atomic Energy Agency [32], where 
the z-scores for As, Cu, Mn, Ni, Pb, V and Zn were 0.06, 
0.92, 1.21, − 1.60, − 0.23, − 0.38 and − 0.41, respectively.

Organic carbon (OC) and elemental carbon (EC): The 
analysis of OC and EC was performed using the method 
NIOSH (National Institute of Occupational Safety and 
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Health), a thermo-optic method [33, 34]. The detection 
and quantification limits for carbon were 0.05 µg  cm−2 
and 1.0 µg  cm−2, respectively.

Results and discussion

The results of the  PM10 and  PM2.5 sampling, carried out 
from April 2019 to March 2020, just before the start of the 
COVID-19 pandemic restrictions, are shown in Tables 1 and 
2 below. The results obtained are worrying as they exceed 
the optimal values given by the WHO [7] and even, in sev-
eral cases, the most conservative values of the Peruvian leg-
islation [9], Figs. 1 and 2.  PM2.5 and  PM10 are highest in the 
autumn and winter seasons and in both cases, there is a trend 
to descending in spring and summer. Evaluating the results 
of  PM2.5, the mean mass concentration during the monitor-
ing campaign exceed the double the WHO value and only 
two days in winter and one day in autumn seasons exceed 
the ECA-PER of 50 µg  m−3.

Since the beginning of the monitoring, the mass concen-
tration of  PM2.5 decreased by 66% by the end of the cam-
paign, as shown in the mean results for each season. It can 
be said that the WHO target value according to the 2021 
guidelines was not accomplished, which would mean a non 
healthy air quality during the time of the monitoring. Fol-
lowing the air quality standard, ECA-PER, only 3 days of the 
monitoring period, the air quality was unhealthy.

Although the  PM10 results follow the same trend as  PM2.5 
the correlation coefficient, calculated using an Excel spread-
sheet, between the two variables is only 0.2206, indicating 
a weak correlation. The mass concentration in this case has 
descending 74% from autumn to summer. The average aero-
sols of 10 microns or less exceed the WHO target value by 
2.5 times and the Peruvian ECA by 11.3%. The cases of con-
centrations exceeding the ECA are autumn > spring > win-
ter > summer. The quality of air in this case is unhealthy. The 
same trend regarding the descending seasonal mass concen-
tration has been found by other authors [35]. Those authors 

Table 1  Mean, standard deviation (s), number of samples (n), and 
minimum (Min) and maximum (Max) results obtained of mass con-
centration of  PM2.5 µg  m−3 during sampling time, including year sea-
son

Year Seasons

Fall Winter Spring Summer

Mean 32.9 ± 2.1 35.3 ± 3.3 40.7 ± 3.3 29.4 ± 3.8 23.2 ± 2.2
s 10.1 7.8 9.0 7.7 5.2
n 91 22 28 16 22
Min 15.3 22.9 24.6 19.1 15.3
Max 54.9 50.8 54.9 46.5 33.8

Table 2  Mean, standard deviation (s), number of samples (n), and 
minimum (Min) and maximum (Max) results obtained of mass con-
centration of  PM10 µg  m−3, during sampling time including year sea-
son

Year Seasons

Fall Winter Spring Summer

Mean 111.3 ± 4.6 129 ± 11 111.3 ± 6.6 102.1 ± 9.1 95.6 ± 2.4
s 21.3 25.6 17.1 15.4 5.3
n 83 22 26 11 19
Min 80.9 84.8 83 81 83.7
Max 168.9 168.9 136 129.7 102.9

Fig. 1  Distribution of mass 
concentration of  PM2.5 and 
comparison with WHO target 
value and ECA of Peru
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also shown how it is possible to reduce the air pollution 
with a series of control policies, laws and regulations. They 
issued the “Air Pollution Prevention and Action Plan” (APP-
CAP), by setting specific quantitative targets and took action 
on the control measures on coal/fired emissions during the 
heating seasons. With that Action Plan, from 2013 to 2019, 
China reduced the concentration of  PM2.5 from 89.5 µg  m−3 
to 42 µg  m−3. Those values are lower than those obtained at 
the Carabayllo monitoring site of this study.

The Positive Matrix Factorization, PMF model [36] was 
used and run it very well with the data and uncertainties 
calculated. It decomposes a matrix of speciated sample 
data into two matrices: factor contributions and factor pro-
files, in orden to understand the factors or sources impact-
ing the speciared sample data [37]. The profiles and dis-
tribution of pollution sources has been evaluated in 54 
samples of  PM10, using 33 species, Figs. 3 and 4. The final 
solution of the model gave us five factors of contribution 

to the atmospheric contamination. The contribution of fac-
tor 1 is 23% and it was defined mainly as metal industry 
because the high concentration of CO, CE, Ag, Cd, Ce, 
Co, Cr, Fe, Hg, Pb, Sc, Zn. The various metal mechani-
cal workshops, smelters developed in the area contribute 
with high values of heavy metals. Factor 2 and factor 3 
have the same contribution, 18%. Factor 2 was identified 
as sea salt, because of the highest percentage of Br, Na, 
 Cl− and  F−. Lima is a coastal city, bordered on the west 
by the Pacific Ocean, and the presence of those elements 
is the fingerprint of marine source. The factor 3 was cata-
logued as industrial activity. The high percentage of met-
als such as Al, Cd, Co, Cu, Hg, Ni, Pb, Ti and V confirm 
the profile assigned. In the neighboring district, two kilo-
meters away, there is a paper factory and a building prod-
ucts factory, as well as several factories producing bricks 
that can be contributing to the contamination. Because of 
the long residence times, transport of particulate mate-
rial in the atmosphere can extend over long distances e.g. 
100–1000 km [3].

Factor 4 has been associated to dust and non-exhaust 
contribution. Several elements have high percentage of con-
centration. The elements Al, Ca, Mg, Mn, Ti correspond 
to crustal origin and other metals such as Cd, Co, Ce, Cr, 
Cu, Fe, Ni, Pb,  SO4

−2 from anthropogenic origin, comes 
from road re-suspended dust and the friction of the brakes 
and tires from vehicles. The high percentage of K can also 
indicate biomass burning. As mentioned, several streets 
in the district are not paved; brick factories and vehicular 
traffic contribute to this profile. The last factor number 5 
has the highest contribution, 32%. It was characterized by 
a high percentage of OC, EC, Ba, Br, Cr, Cu, Ni, Pb, Sb, V, 
Zn,  NO3

− and  SO4
−2 and may represent different sources of 

combustion. The presence of EC, V, Ni, Pb, Sb,  SO4
−2 is 

Fig. 2  Distribution of mass 
concentration of  PM10 and com-
parison with WHO target value 
and ECA of Peru
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Fig. 4  PM10 chemical species profiles (concentration µg  m−3)
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characteristic of exhaust emissions from oil-fueled vehicles 
[38–42].

The results of the quality control of the k0-INAA method 
are shown in Table 3. As it can be seen, the results obtained 
are satisfactory, with the exception of Na, where En value is 
higher than 1. This high result may be due to contamination 
by handling, at the time of sample preparation and being 
close to the limit of quantification for sodium.

Conclusion

Based on the results of mass concentration obtained in  PM2.5 
and  PM10, which exceed the permissible values recom-
mended by WHO, the air quality in the Carabayllo district 
is not healthy.

It was identified five sources that contributes to high per-
centage of species in the atmosphere: vehicle exhaust 32%, 
metallurgical industry 22%, sea salt 18%, industrial activity 
18%, and dust and no-exhaust emissions 10%.

The scientific evidence showed in this study, is by far 
good enough to implement environmental strategies for the 
inhabitants of Carabayllo.

The analytical techniques used in this evaluation demon-
strate its complementary.
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