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SPECIAL ISSUE: HYDROLOGICAL DATA: OPPORTUNITIES AND BARRIERS

Construction of a high-resolution gridded rainfall dataset for Peru from 1981 to the
present day
Cesar Aybara, Carlos Fernándeza,b, Adrian Huertaa, Waldo Lavadoa, Fiorella Vegaa and Oscar Felipe-Obandoa

aServicio de Meteorología e Hidrología del Perú (SENAMHI), Dirección de Hidrología, Lima, Perú; bPotsdam Institute for Climate Impact Research,
Potsdam, Germany

ABSTRACT
A new gridded rainfall dataset available for Peru is introduced, called PISCOp V2.1 (Peruvian
Interpolated data of SENAMHI’s Climatological and Hydrological Observations). PISCOp has been
developed for the period 1981 to the present, with an average latency of eight weeks at 0.1° spatial
resolution. The merging algorithm is based on geostatistical and deterministic interpolation methods
including three different rainfall sources: (i) the national quality-controlled and infilled raingauge
dataset, (ii) radar-gauge merged precipitation climatologies and (iii) the Climate Hazards Group
Infrared Precipitation (CHIRP) estimates. The validation results suggest that precipitation estimates are
acceptable showing the highest performance for the Pacific coast and the western flank of the Andes.
Furthermore, a meticulous quality-control and gap-infilling procedure allowed us to reduce the forma-
tion of inhomogeneities (non-climatic breaks). The dataset is publicly available at https://piscoprec.
github.io/ and is intended to support hydrological studies and water management practices.
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1 Introduction

Accurate spatio-temporal rainfall estimations are essential for
the development of scientific and operational applications,
which allow to understand the water cycle and its impact on
natural and human systems. Conventional observations from
raingauge stations are an ideal input for the aforementioned
applications. Unfortunately, strong spatial variability
(Garreaud et al. 2009) and the heterogeneous and sparse
distribution of raingauges combined with systematic data
quality deficiencies (Hunziker et al. 2017b) precludes their
widespread use within Peru.

In the last decades, new algorithms based on the indirect
estimations from advanced infrared and microwave satellites,
have led to the construction of different gridded rainfall
datasets (GRD) that are used as auxiliary data to overcome
the lack of raingauge stations, increase the spatio-temporal
resolution and reduce uncertainties in rainfall predictions
(Baik et al. 2015, Verdin et al. 2015, Bi et al. 2017, Sun
et al. 2017). GRD based on satellites have specific shortcom-
ings in Peru. For instance, the TRMM Multi-satellite
Precipitation Analysis (TMPA) 3B42 V7 (Huffman et al.
2007), the Climate Prediction Center MORPHing Technique
(CMORPH, Joyce et al. 2004) and the Precipitation
Estimation from Remotely Sensed Information using
Artificial Neural Networks (PERSIANN, Sorooshian et al.
2000) tend to have large sensor errors over the Peruvian
Andes (Derin et al. 2016), overestimate the magnitude of
precipitation on the Pacific Coast (Ochoa et al. 2014) and
span a short time period (≤20 years). On the other hand,
reanalysis-based GRD, e.g. the National Centers for

Environmental Prediction – Climate Forecast System
Reanalysis (NCEP CFSR; Saha et al. 2010), tend to be of
coarser spatial resolution and show lower performance than
satellite products. However, GRD based on a blend of satel-
lite, reanalysis and gauge rainfall sources are available. The
most recent blended GRDs, with global and near real-time
coverage, are the Multi-Source Weighted-Ensemble
Precipitation (MSWEP; Beck et al. 2019) and the Climate
Hazards Group Infrared Precipitation with Stations
(CHIRPS; Funk et al. 2015a).

The MSWEP provides three-hour precipitation at a spatial
resolution of ~10 km for the period 1979 to the present, while
CHIRPS covers daily precipitation at ~5 km for 1981–present.
Only a few studies have been done to analyse the performance of
these new blended GRDs in adjacent regions of Peru. For
instance, Zambrano-Bigiarini et al. (2017) show that both
CHIRPS and MSWEP perform well at high temporal scales,
presenting problems of overestimation (underestimation) in
events of light rain (extreme rain) in Chile, whereas
Perdigón-Morales et al. (2017) and Javier et al. (2016) mention
that CHIRPS is acceptable at reproducing climatological values
ofmonthly accumulated precipitation inMexico andVenezuela,
respectively. Nonetheless, these studies re-used raingauges that
had been incorporated previously in the merging algorithm,
which alters the reliability of blended GRD performance results.
In line with this, Beck et al. (2017b) reported that MSWEP
performs better than CHIRPS only in regions with extensive
raingauge networks (e.g. in temperate regions). However, these
findings cannot be directly applied to regions with sparse and
irregular monitoring networks, such as Peru.
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Recently, several studies have indicated essential consid-
erations when generating daily and monthly blended GRD in
data-scarce regions: (a) the efficiency of blended GRDs largely
depends on the predictor, and the interpolation method used
must be able to adapt to scenarios with high spatial hetero-
geneity (Dinku et al. 2014); (b) geostatistical interpolation
methods outperformed deterministic methods at annual and
monthly time steps, whereas for the daily time step, geosta-
tistic and deterministic methods were proven to be compar-
able (Ly et al. 2013); (c) there are difficulties in assuming the
space-stationary hypothesis and to establish an adequate the-
oretical semivariogram at the daily time step (Nerini et al.
2015); (d) the optimized interpolation parameters in determi-
nistic methods significantly improve the final results (Chen
and Liu 2012); (e) the gap-infilling in precipitation time series
is highly important to minimize inhomogeneities in the
gridded datasets for periods of missing data, especially in
heterogeneous regions (Peterson et al. 1998, Beguería et al.
2015, Yanto et al. 2017); and (f) the use of simple ratios based
on very high rainfall climatologies can significantly decrease
the systematic bias (Strauch et al. 2016).

On this basis, this study presents the development of
PISCOp V2.1, a new local blended GRD, headed by the
National Service of Meteorology and Hydrology of Peru
(SENAMHI). PISCOp V.2.1 contains daily and monthly rain-
fall grids at 0.1° computed for 1981–2019 covering the whole
of Peru with an average latency of eight weeks. It is built
using serially complete raingauge datasets, CHIRP V2.0
(without raingauge stations), radar-gauge merged precipita-
tion climatologies, geostatistics and deterministic interpola-
tion methods, and a simple monthly correction factor applied
to daily estimates. The objective of this paper is to provide

detailed and transparent information about the construction
of PISCOp V2.1 as well as to evaluate its performance and
stress its limitations.

2 Material and methods

2.1 Study area

Peru is located in the central-western region of South
America (0°–18°S; 68°–82°W) (Fig. 1), covering climatically
extremely variable regions with diverse precipitation regimes
that result from the interaction between synoptic-scale atmo-
spheric currents, the complex orography of the Andes, the
cold Humboldt Current System (HCS) and the El Niño
Southern Oscillation (ENSO; Garreaud et al. 2009, Lavado
Casimiro et al. 2012).

In the austral summer, easterly trade winds from the
southerly position of the Intertropical Convergence Zone
(ITCZ) transport humid air masses from the tropical
Atlantic towards the Amazon Basin (Carvalho et al. 2011,
Marengo et al. 2012, Manz et al. 2017) and to the south
along the Andes through the South American Low-Level Jet
(SALLJ; Vera et al. 2006, Boers et al. 2013). This period
determines a marked wet season in most of Peru (Marengo
et al. 2012). Conversely, when the ITCZ is located further
north (austral winter), convection and, consequently, preci-
pitation levels are significantly reduced.

In the Peruvian Andes, the climate is complex and primarily
controlled by orography that acts as a topographic barrier to
moisture flow, causing the formation of strong precipitation
gradients on the eastern flanks of the Andes (Bookhagen and
Strecker 2008). The inter-Andean valleys (> ~500 mm/year)

Figure 1. (a) Spatial extent of PISCOp V2.1. Points with × indicate stations with more than 95% of data within the 1981–2016 period. (b) Location and upstream
catchments of the selected stream gauges.
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are principally dominated by convective processes (Garreaud
1999, Campozano et al. 2016) channelling moisture intrusions
of the Amazon (Chavez and Takahashi 2017). At the same
time, the influence of cold and dry air masses originating
from the HCS cause the driest conditions of our study area at
the Pacific coast and on the western flanks of the Andes
(< ~500 mm/year). However, during the occurrence of
ENSO, the HCS weakens and the formation of severe convec-
tive storms can occur, especially over the northern Pacific coast
(Antico 2009).

Based on the hydro-climatic heterogeneity described
above and according to the classification of Manz et al.
(2017), the study area was divided into five sub-regions
(Fig. 1(a) and Table 1): (a) The Pacific coast (PC, average
annual precipitation of ~150 mm/year); (b) The western
Andean slopes (AW, ~400 mm/year), (c) the eastern
Andean slopes (AE, ~1100 mm/year), (d) the Andes-
Amazon transition (AAT, ~3200 mm/year) and (e) the
Amazon lowlands (AL, ~2250 mm/year).

2.2 Raingauge dataset

The raw gauge dataset comprised 945 daily observation data
provided by SENAMHI. The raingauge data spans the period
1981–2019 and is characterized by a high number ofmissing values
and numerous quality issues (Hunziker et al. 2017b), being gen-
erally caused by the observer at the time of data collection (e.g.
incorrect measurement of values ≤1 mm) and instrumentation
malfunction. Even though metadata information would help to
perform the data quality control, this was not used because of its
limited availability. Therefore, our analysis of raingauge data
mainly focused on gross error detection and gap-infillingmethods.

2.2.1 Quality control (QC)
Most methods for quality control (QC) in raingauge observa-
tions are designed for dense station networks (Vicente-
Serrano et al. 2010, Isotta et al. 2014, Notivoli et al. 2017),
which are difficult to assume in this study. As expected,
assuring the quality of a dataset is more problematic for data-
scarce regions due to the reduced number of neighbouring
stations (Hunziker et al. 2017b). Considering this fact and the
lack of an established quality management system in Peru, we
propose a three-step QC approach which can be considered

as conservative because only gross errors are deleted if there is
strong evidence for implausibility. Hence, it is still expected to
find some remaining errors after QC, especially in areas with
a lower density of gauges. The following checks were applied:

(1) General problems (automatic): to delete obvious incon-
sistent values, such as negative and non-physical preci-
pitation, decimal point-related errors, repetitive dates,
repetitive consecutive values and unexpected changes
in latitude and longitude coordinates.

(2) Spatial extreme values (automatic): a threshold of
200 years of return period of precipitation is used for
the detection of extreme events, as in Keller et al.
(2015). Then, if the extreme values occur in at least
two neighbouring (<50 km) gauges for the same date,
they are preserved, otherwise they are deleted.

(3) Break and bad segments (manual): a visual control to
recognize segments with asymmetric rounding pat-
terns and obvious inhomogeneities.

2.2.2 Gap-infilling
Another source of uncertainty is found in the temporally
inconsistent gauge network which is liable to produce sys-
tematic bias during the merging phase (New et al. 2000). This
is of primary importance in data-scarce regions, where several
raingauges come in and out of use (Hunziker et al. 2017b).
Similar to the QC approach, there is no established metho-
dology for gap-infilling in Peru. Therefore, we propose a two-
step approach to generate a serially complete raingauge
dataset.

First, relying on neighbouring gauges, the relatively newer
and effective spatio-temporal imputation method, CUTOFF
(Feng et al. 2014), was applied to infill the previously quality
controlled gauge datasets at daily and monthly time steps.
This method, unlike iterative imputation approaches (e.g.
missforest, Stekhoven and Bühlmann 2012) or matrix decom-
position techniques (Lindstr et al. 2013), is principally
designed to handle missing values in raingauges by taking
into account the spatio-temporal rain distribution. Before
CUTOFF is applied, each raingauge is grouped with other
raingauges if the following conditions are met: (a) distance <
100 km, (b) sharing a minimum of 10 years of data, and (c)
daily (monthly) linear relationship > 0.5 (> 0.8). Secondly, if
the previous condition is neither fulfilled nor enough to
create serially complete time series, the quantile mapping
bias correction (Qm), produced by matching the empirical
cumulative distribution of the collocated grid cell (CHIRPM,
see Section 2.3) to the available gauge data (Gudmundsson
et al. 2012), is used to infill the remaining gaps of each
raingauge.

2.3 Modification of CHIRP (CHIRPm)

CHIRP products at the monthly (CHIRPm) and daily
(CHIRPd) time step are initially calculated from the prelimin-
ary pentad time-step product (CHIRPpentad) using the follow-
ing equations (Funk et al. 2015a):

Table 1. Sub-regions defined for the analysis of PISCOp V.2.1. Adapted from
(Manz et al. 2016), N is the number of raingauges within each sub-region.

Sub-region Elevation
(m a.s.l.)

Climate driver Rainfall regime N

Peruvian Pacific
Coast, PC

0–1500 ITCZ, HCS, ENOS Wet (Dec.–May)
Dry (Jun.–Nov.)

97

Andes western
slope, AW

>1500 Elevation, ITCZ Wet (Dec.–May)
Dry (Jun.–Nov.)

151

Andes eastern
slope, AE

>1500 Elevation,
Orography,
ITCZ

Weak seasonality,
drier JJA

128

Andes-Amazon
transition, AAT

500–1500 Orography, ITCZ,
SALLJ

Weak seasonality,
drier JJA

26

Amazon lowland, AL 0–500 ITCZ, trade winds Weak seasonality,
drier JJA

39
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IRPpentad ¼ bo þ b1 � TIR CCDpentad%
� �

(1)

CHIRPpentad ¼ CHPclim �
IRPpentad
IRPclim

(2)

where IRPpentad is the precipitation calculated from the linear
model between thermal infrared cold cloud duration percen-
tage (TIR CCD%) and TRMM 3B42 V7 product; CHPclim are
the monthly precipitation climatologies generated by Funk
et al. (2015b) and IRPclim represents the climatology of infra-
red precipitation.

Even though the use of climatic or monthly correction
factors can reduce the systematic bias (Funk et al. 2015a,
Keller et al. 2015, Parmentier et al. 2015, Strauch et al.
2016, Beck et al. 2017a, van Osnabrugge et al. 2017), it is
crucial that the predictor of larger temporary aggregations
(e.g. CHPclim) is well represented, otherwise a reverse process
could occur. For Peru, we found that CHPclim extremely
overestimates precipitation (>500%) at the Peruvian coast
between 8°–18°S (see Supplementary material, Fig. S1).
Furthermore, it does not adequately represent the orographic
rainfall hotspots over the Andes-Amazon transition and con-
siders raingauges with poor reliability. Based on this, CHPclim
was replaced by our own climatology PISCOpclim (see
Section 2.3.1), resulting in the modified form of CHIRP,
CHIRPM):

CHIRPMm ¼ CHIRPm � PISCOpclim þ ε

CHPclim þ ε
(3)

CHIRPMd ¼ CHIRPd� PISCOpclim þ ε

CHPclim þ ε
(4)

where ε is a threshold defined as 0.5 in the denominator and
the numerator in order to deal with values of zero or near
zero. This equation is applied to monthly and daily CHIRP
estimates, resulting in CHIRPMm and CHIRPMd, respec-
tively. CHIRP was previously resampled to a spatial resolu-
tion of 0.1 ° through cubic spline interpolation.

2.3.1 PISCOp climatology (PISCOpclim)
For Peru it has been found that the TRMM precipitation
radar product 2A25 (TPR; Iguchi et al. 2000) is the most
suitable rainfall data source for identifying spatial precipita-
tion variability and seasonal patterns, even for the complex
orographic rainfall hotspots located in the eastern Andes
(Bookhagen and Strecker 2008, Nesbitt and Anders 2009,
Manz et al. 2016). Based on this dataset, we constructed
monthly climatologies at 0.1° spatial resolution. The TPR
data used corresponds to the 1998–2013 period, excluding
the year 2014 because during that year the satellite was
carrying out anomalous manoeuvres related to its dismantling
(Houze et al. 2015). The construction procedure of
PISCOpclim (Fig. 2) is summarized as follows:

(1) Extraction of suspicious pixels with a rain rate >
300 mm/h (Hamada and Takayabu 2014).

(2) Aggregation of the entire TPR dataset to mean clima-
tology estimates for each calendar month considering

the delineation of the overpassing TPR pixel, proposed
by Manz et al. (2016).

(3) Application of a spatial bias thresholding filter to
replace the pixels with large ratios (>5 median) by
the average of the surrounding 3 × 3 kernel.

(4) Smoothing of rain rate through cubic spline
interpolation.

(5) Merging with the long-term (1981–2010) monthly cli-
matologies raingauge dataset (Fig. 1(a)) using residual
ordinary kriging (ROK, Section 2.4.2).

2.4 Merging phase of PISCOp V.2.1

The merging phase (Fig. 2) can be divided into four steps.
Firstly, the provisional product P-PISCOpd is created by mer-
ging CHIRPMd and serially complete daily gauge datasets
applying residual inverse distance weighting (RIDW). Secondly,
PISCOpm is estimated by merging CHIRPMm and completed
monthly gauge datasets using ROK. Thirdly, a monthly correc-
tion factor (Mcf) is derived from the comparison of PISCOpm
and P-PISCOpd aggregated at a monthly time step. Finally,
PISCOpd is estimated by multiplying Mcf by P-PISCOpd.

2.4.1 Residual inverse distance weighting (RIDW)
Residual inverse distance weighting is used to generate P-
PISCOpd. In this deterministic prediction method, the resi-
duals are defined in each gauged location si, as follows:

ro sið Þ ¼ XB sið Þ � XO sið Þ (5)

Si 2 S; i ¼ 1; . . . ;N (6)

where N is the number of gauge observations, ro are the
residuals, XO is the daily raingauge value and XB is the
CHIRPMd value computed at each gauge location. The collo-
cation of a raingauge to each CHIRPMd grid cell was per-
formed using the smoothed merging (SM; Li and Shao 2010)
approach. Unlike centre neighbour approximation, SM oper-
ates over a 2 × 2 kernel considering the distances to the pixel
centroids as weights, resulting in a smoothed field that reduces
the boundary bias. To estimate the residual field ðμj), ro is

interpolated by IDW at each grid point (j = 1, . . .,M), given by:

μj ¼
PN

i¼1 wi Sj�Sij jj jð Þro sið ÞPN

i¼1 wi Sj�Sij jj jð Þ if Sj � Si
�� ���� ���0

ui if Sj � Si
�� ���� �� ¼ 0

8<
: (7)

wi Sj � Si
�� ���� ��� � ¼ 1

Sj� Sij jj jα (8)

where :j jj j is the euclidean distance, wi is the weight assigned
to the gauge observation si and α is the power parameter. The
α parameter controls the desired smoothness and the local
behaviour in the spatial prediction. High (low) values of α
increase (decrease) the influence of the furthermost observa-
tions, generating low (high) variance in the residual field. For
additional details on IDW, see Babak and Deutsch (2009).

Different studies have examined the effects of varying α for
the spatial prediction of rainfall (Chen and Liu 2012,
Adhikary 2017). Accordingly, the optimal α was estimated

HYDROLOGICAL SCIENCES JOURNAL 773



by minimizing the root mean square error (RMSE) obtained
from the 10-fold cross-validation. Finally, P-PISCOpd is
defined as:

P-PISCOpd ¼ CHIRPMd � μ (9)

2.4.2 Residual ordinary kriging (ROK)
Residual ordinary kriging is used for the generation of
PISCOpm. Similar to RIDW, the residuals are estimated by
Equations (5) and (6), with the main difference that XO

corresponds to monthly gauge estimates and XB represents
the CHIRPMm values computed at each gauge location.
However, unlike RIDW, the residual field ro is interpolated
by ordinary kriging (Grimes et al. 1999) at each grid point
and added back to CHIRPMm.

To ensure the non-stationarity assumption, the residuals
are converted to a logarithmic scale and back-transformed
after the merging phase. In this study, the variogram adjust-
ment is automatically performed based on Hiemstra et al.
(2009). For more details on the implementation of ROK,
refer to Goovaerts (2000).

2.4.3 Monthly correction factor (Mcf)
Given that a higher spatial relationship is achieved at the
monthly rather than at the daily time step (Ly et al. 2013),
PISCOpm is expected to present a higher performance

compared with the monthly aggregation of P-PISCOpd.
Therefore, based on Keller et al. (2015), a monthly correction
factor (Mcf) was added after the creation of P-PISCOpd and
PISCOpm with two purposes: to provide higher spatial con-
sistency to daily predictions and to ensure that the monthly
aggregation of the daily product matches the monthly pro-
duct at each grid point. Thus, Mcf is calculated by:

Mcf ¼
PISCOpmPN

i¼1 P�PISCOpd ið Þ
if Mcf > 0

1if
PN
i¼1

P � PISCOpd ið Þ ¼ 0

8>><
>>:

. . . (10)

where N is the number of days of the corresponding month.
Finally, PISCOpd is defined as:

PISCOpd ¼ P� PICSOpd�Mcf (11)

2.5 Evaluation of PISCOp V.2.1

The process for evaluating the performance of PISCOp V2.1
was performed on the period 1981–2016 in two steps: Firstly,
a pixel-to-point evaluation is carried out using an indepen-
dent rainfall network (ID) which consists of 100 raingauges
(Fig. 1(a)) not previously used for the development of
PISCOp V2.1.

Figure 2. Schematic overview of the development of PISCOp V2.1.
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We selected all raingauges with >12 months of data
between January 1981 and December 2016 that are located
at a minimum distance of 20 km from the PISCOp raingauge
network. Three continuous statistics are computed comparing
the time series of PISCOp V2.1 and ID (Table 2). The
Pearson correlation coefficient (CC) is used to evaluate the
capability of PISCOp V2.1 to capture rainfall variability; the
RMSE measures the average magnitude of the error; and
the percent bias (PBIAS) indicates the degree to which each
PISCOp V2.1 value is over- or under-estimated (Teng et al.
2014).

Additionality, following the criteria defined by Zambrano-
Bigiarini et al. (2017), the three categorical statistics (Table 2)
probability of detection (POD), false alarm rate (FAR) and
threat score (TS) are used to determine PISCOp V2.1 rainfall
detection capabilities within five precipitation intensity classes
(Table 3). The POD and FAR indicate which fraction of the
observed events are correctly detected and which fraction of
the events reported by the GRDs did not occur. The TS is
a general categorical statistic sensitive to hits and penalizes
both missing and false alarms affected by the climatological
frequency of the event. More information on the aforemen-
tioned indices can be found in Wilks (2006).

Secondly, a water balance evaluation using two simple
runoff ratios (RR and RRf) is carried out in 19 Peruvian
catchments using the following equations:

RR ¼ Q
P

(12)

RRf ¼ Q
P � ETð Þ (13)

where Q, P and ET are the annual long-term average of the
discharge, precipitation and real evapotranspiration,

respectively. Unlike the pixel-to-point approach, the runoff
ratios (RR and RRf) allowed us to assess the long-term capa-
city of PISCOp V2.1 in more extensive areas. Due to the fact
that the annual time step is a sufficiently large time period, we
assume that the catchment storage is zero. Hence, Q and (P –
ET) are expected to adopt similar values. The discharge gauge
data (Q) were obtained from the Environmental Research
Observatory SO HYBAM (www.ore-hybam.org) and
SENAMHI (Table 4 and Fig. 1(b)). Due to data scarcity, the
ET was computed based on a modification of the Budyko
hypothesis (Fu’s equation, Yao et al. 2016) and the gridded
maximum and minimum temperature dataset generated for
Peru by Vicente-Serrano et al. (2017). Four GRDs were used
to estimate P: (a) PISCOp V2.1; (b) CHIRPM; (c) ORE-
HYBAM (HOP, Guimberteau et al. 2012), which is only
available for the Amazon and generated at 1° spatial resolu-
tion using ordinary kriging; and (d) the previous PISCOp
version (V1.0), which is based on the merging between
CHIRPS and raingauges applying kriging with external drift
(Lavado et al. 2015). We used CHIRPM as a reference to
explore possible improvements after the merging phase. We
compared PISCO V2.1 and PISCOp V1.0 to examine the
repercussions of changing CHIRPS by CHIRPM. The com-
parison to HOP serves to understand the role of the intro-
duction of spatial predictors (CHIRPM). It is important to
note that HOP, PISCOp V1.0 and PISCOp V2.1 present
almost the same availability of raingauges within selected
upstream catchments. Therefore, the influence of raingauge
density can be handled as a common systematic variation for
all GRDs used.

3 Results and discussion

3.1 State and gap-infilling of the peruvian rainfall
dataset

According to the three-step QC approach (Section 2.2.1),
3.51% of the total data (Table 5) had gross error and was
deleted for the next steps. The most affected sub-region with
data exclusion was the AW and the least affected was the PC.
Hunziker et al. (2017b) indicated that a large fraction of gross
errors are caused by observers during data recording, while
Hunziker et al. (2017a) mentioned that due to these errors
and a large amount of missing data, 40% of available rain-
gauges are inappropriate for climate analyses. Following our
approach, and considering that within the 1981–2016 period
at least 10 years of continuous information must be available
after applying QC, the number of stations had reduced from
945 to 441 (Fig. 1(a)). These raingauges (henceforth called
PISCOp rainfall network) form the basis and constitute the
most valuable source of information for the construction of
the gridded dataset.

The density of the PISCOp rainfall network lies at around
282 per 106 km2) for Peru (Table 5), with maximum density
in AW and minimum in AL. These results suggest
a remarkably heterogeneous distribution and very sparse con-
ditions across the whole of Peru. Despite the data scarcity, the
Peruvian rainfall network (Table 5) lies within the minimum
requirements for hydrological analyses defined by the World

Table 2. Continuous and categorical statistics. X: GRD estimate; Y: ID measure-
ment; �X : GRD average; �Y: ID average; N: number of data pairs; A: number of hits;
B: number of false alarms; C: number of misses; and D: number of correct
negatives.

Statistic Formula Perfect
score

Continuous statistics
Correlation coefficient, CC

CC ¼
P

X��Xð Þ Y�Y 
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
X��Xð Þ2 Y��Yð Þ2

p 1

Root mean squared error,
RMSE

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

P
X � Yð Þ2

q
0

Percentage bias, PBIAS PBIAS ¼ 100� P X�Yð Þ =
PX

h i
0

Categorical statistics
Probability of detection, POD POD ¼ A=ðAþ CÞ 1
False alarm ratio, FAR FAR ¼ B=ðAþ BÞ 0
Threat score, TS TS ¼ A=ðAþ Bþ CÞ 1

Table 3. Classification of rainfall events based on quantiles.

Quantile Daily rain (mm/d) Daily rainfall event

[0–0.1>] * [0–1.5>] No rain
[0.1–0.5>] [1.5–5.3>] Light rain
[0.5–0.9>] [5.3–19.5>] Moderate rain
[0.9–0.975 >] [19.5–38.4>] Heavy rain
0.975 > 38.4> Violent rain

*This rainfall class is considered as no rain.
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Meteorological Organization (WMO 1994) and it is similar to
the raingauge density presented in previous works related to

regional runoff simulation in adjacent regions of Peru
(Guimberteau et al. 2012, Zulkafli et al. 2013, Getirana et al.
2014). Most of these raingauges are located in mountain
recharge zones, which is an important condition for rain-
fall–runoff simulation in Pacific and Andean drainage catch-
ments (Fig. 1). Nonetheless, the density of the PISCOp
rainfall network is far below conventional climatological data-
sets worldwide (Hofstra et al. 2009, Yatagai et al. 2012,
Newman et al. 2015, Lussana et al. 2018). Therefore, it is
expected that regions with lower density introduce biases in
the mean and variance of the gridded dataset.

The gaps in the raingauge series were identified as the
main problem for the construction of a serially complete
gauge dataset in Peru. In general, most raingauges belonging
to the PISCOp rainfall network were installed after the year
2000, which explains the high percentage of missing data
(34.74%) before this date (Fig. 3). For this reason, the amount
of data available for the period 2001–2016 exceeds by 117%

Table 4. Summary of in situ discharge gauge characteristics. ETP: potential evapotranspiration; ET: real evapotranspiration.

No. Name Code Catchment area
(km2 × 10−3)

Raingauge density
(per 106 km2)

Mean discharge
(m3/s)

PISCOp V2.1 Precipitation
(mm/year)

ETP ET

1 Borja BRJ 94.21 371.5 49.43 1730 973 799
2 Chazuta CZT 69.57 445.6 30.76 2333 1043 936
3 Pucallpa PCP 267.38 254.3 101.78 2047 996 881
4 Requena RQN 359.26 203.2 123.34 2236 1351 1116
5 Ardilla ARD 11.89 1093.2 1.49 916 1051 554
6 Puchaca PCH 0.74 0 0.06 717 834 448
7 Condorcerro CON 10.54 664.3 1.39 743 653 380
8 Yanapampa YNP 4.27 703.3 0.41 470 678 199
9 Santo Domingo SDG 1.89 1587.2 0.16 463 676 206
10 La Capilla LCP 2.19 1370.8 0.19 541 695 242
11 S&T Imperial SYT 5.96 1341.3 0.55 477 658 210
12 Conta CNT 3.12 960.0 0.11 374 727 268
13 Letrayoc LTY 3.57 1121.4s 0.26 502 669 304
14 Huatiapa HTP 13.04 997.2 0.76 513 551 328
15 Chucarapi CCP 13.51 592.2 0.32 300 604 235
16 La Tranca LTC 2.01 993.1 0.02 123 665 93
17 Bella Union BUN 4.30 465.5 0.12 204 698 122
18 Puente Ilave ILV 8.12 369.2 0.32 304 523 173
19 Puente Ramis RMS 15.09 596.2 0.72 597 549 422

Table 5. Overview of the state and gap-infilling of the PISCOp rainfall network: BCC:
percentage of gaps completed by bias-corrected CHIRPM (%); Dn: spatial average of
KS statistic; and MKbef–af: number of spurious trends after the gap-infilling procedure.

Sub-region (total rain gauges: 441)

PC AW AE AAT AL Total

Monthly
Density (/106 km2) 480 754 381 170 59 282
Gross error (%) 0.62 7.5 2.19 3.60 1.2 3.51
No data (%) 34.8 30.94 41.44 45.14 41.72 37.41
CUTOFF (%) 14.16 11.20 12.49 35.28 40.76 16.40
BCC (%) 20.64 19.74 28.95 10.05 0.96 21.01
Dn 0.07 0.05 0.04 0.03 0.02 0.05
Daily
No data (%) 32.98 29.39 39.82 43.09 39.40 35.65
CUTOFF (%) 12.22 13.88 27.04 34.07 33.72 20.56
BCC (%) 20.76 15.51 12.78 9.02 5.68 15.09
Dn 0.03 0.03 0.05 0.07 0.03 0.03
MKbef–af 4 1 7 3 3 18

Figure 3. Missing data for each sub-region. Note: the raingauges are ordered from lowest missing values (upper line) to highest missing values (lower line).
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that for the period 1981–2000, with the most significant
difference (204%) in the AL. The monthly gap-infilling
approach based on neighbouring stations allowed us to infill
44% of total missing data, while the daily approach allowed
58% to be infilled (Table 5).

Considering the fact that the neighbouring information
was not enough to create serially complete time series for all
raingauges, bias-corrected CHIRPM was added. Similar to
other studies (Chaney et al. 2014, Teegavarapu and Nayak
2017), we used the Mann-Kendall (MK) and Kolmogorov-
Smirnov (KS) statistical tests to determine whether the per-
formance of the gap-infilling procedure is appropriate.

Firstly, the KS nonparametric test, that does not use any
distributional assumptions, was employed as a metric to esti-
mate if the distribution before and after the gap-infilling
procedure was identical. Considering a 5% significance level,
54 raingauges at the daily time step and 41 at the monthly
time step were flagged for showing a poor match between the
cumulative distribution functions (Dn > 0.1, see
Supplementary material, Fig. S2). In addition, Table 5 indi-
cates a spatial average of Dn below 0.07 for all the sub-regions.

Next, to identify the possible formation of spurious trends,
the MK test was performed on annual time series from the
period 1981–2016. At a 5% significance level, 18 raingauges
(see Supplementary material, Fig. S2) were identified with
positive trends (τ > 0.1).

Both results suggest that the gap-infilling procedure
adopted in this study is acceptable, showing an unclear spatial
pattern in the results (Supplementary material, Fig. S2).
Nonetheless, note that ~14% of the raingauges were flagged
by at least one of the tests. Therefore, it is expected that
inhomogeneities are present in the serially complete gauge
dataset. For an individual inspection of the gap-infilling pro-
cedure, see http://piscoprec.github.io/gauge.

3.2 Spatial description of PISCOp

The rainfall pattern for January 1998 (Fig. 4) and day 25 of
this month (Fig. 5) were used to perform a visual check of
PISCOp products (PISCOpm and PISCOpd, Fig. 2). This date
was selected as an atypical and violent rainfall event (Table 3),
caused by the ENSO phenomenon, was experienced on
this day in the north of Peru.

The output analysis for January 1998 was performed con-
sidering as a reference the rainfall measured in this month by
the PISCOp rainfall network (Fig. 4(a)). Thus, CHIRPm
(Fig. 4(b)) only shows an acceptable representation of the
spatial structure of the rainfall field within the AW, while
for the AE, AAT and AL, a remarkable underestimation is
evident with increasing rainfall rates. Underestimation of
TIR-based GRDs, such as CHIRPm, for high rainfall values
is a well-known condition (Kidd and Huffman 2011). In
contrast, the PC shows unrealistically high rain values for
the entire study period (1981–2016). This pattern is
a consequence of the CHPclim used as a spatial predictor;
CHPclim reasonably depicts the spatial structure in the PC.
Nonetheless, the lack of raingauges for calibration produces
severe overestimation of rainfall amounts (Fig. S1). Regarding
the CHIRPMm product (Fig. 4(c)), in general, it improved the

rainfall characterization in most of the sub-regions in com-
parison to CHIRPm. This improvement is explained by the
use of PISCOclim instead of CHPclim in the CHIRPMm con-
struction. However, it is still unable to detect the convective
storms caused by the ENSO in the northern PC.

In contrast to CHIRPm and CHIRPMm, the PISCOpm
product (Fig. 4(d)) underlies different rainfall intensities
and spatial structure of the entire study area. These changes
are the result of the interaction of: (a) spatial autocorrela-
tion among residuals (measured through the semivario-
gram), (b) the distribution of the PISCOp rainfall
network, and (c) the magnitude and sign of the residuals.
For the analysed month, negative residuals and
a considerable number of raingauges led to a rainfall
increase in the AE and AW, as well as to a better repre-
sentation of the spatial pattern caused by ENSO in the
northern PC. Likewise, the Peruvian Amazon areas (AAT
and AL) also show negative residuals, although the reduced
number of raingauges led to a high negative local average.
Therefore, a scenario with high rainfall amounts is
expected, especially when the de-correlation distance is
overcome.

Even though the use of geostatistical interpolation meth-
ods allows the spatial coherence to be maximized, it must be
taken into account that the predicted values in PISCOpm may
differ from the raingauge values particularly related to the
formation of large residuals. This behaviour has already been
extensively described in Tozer et al. (2012) and further stu-
dies (Ensor and Robeson 2008, Hofstra et al. 2009, Erdin et al.
2012). Therefore, special care must be taken when using
PISCOp V2.1 for analysing extreme events, such as those
related to ENSO.

For the blending process at a daily time step, several
products (CHIRPMd, P-PISCOpd and Mcf), were created
before generating the final dataset PISCOpd. In previous
studies, it has been demonstrated that in data-scarce regions
the areal rainfall estimates are better represented in blended
than in the only gauge-based GRDs (Buytaert et al. 2006,
Schuurmans et al. 2007, Nerini et al. 2015). Hence,
P-PISCOp (Fig. 5(c)) was produced by merging the serially
complete PISCOpd rainfall network (Fig. 5(a)) with
CHIRPMd (Fig. 5(b)). Unlike CHIRPMd, P-PISCOp allowed
an admissible characterization of convective storms that
occurred at the northern PC and improved the rainfall sce-
nario in the AW. Nonetheless, a marked underestimation
concerning CHIRPMd, was found for the rainy pixels located
at the centre of the AAT and AL. The explanation of this
change is similar to the previous month analysed, with the
difference that at daily time step the predictor (CHIRPMd)
represents the spatial variance being worse, causing higher
instability in the residuals. Due to the absence of raingauges,
the residuals of the western sub-regions (PC, AW and AE) are
continuously and omnidirectionally transferred to the eastern
sub-regions (AAT and AL) by IDW. The efficiency of this
process directly depends on the residuals variance and inter-
mittent rainfall regime (Chappell et al. 2012). A scenario with
low variance and intermittency should improve the systema-
tic bias,; otherwise, this transfer would result in inaccurate
precipitation values (Fig. 5(c)). Finally, PISCOpd (Fig. 5(d)),
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unlike P-PISCOpd, decreases the bull’s-eye effect formation
around the gauge observations relying on the spatial structure
of PISCOpm. Besides, a clear precipitation increase can be
observed for the AL and AAT due to the formation of Mcf
values > 1 in these sub-regions.

3.3 Performance of PISCOp V.2.1

As may be seen in Fig. 6, the sub-regions PC and AW show
the most significant improvements for PISCOp V2.1 com-
pared to CHIRPM, although there is a slight increment in the
spread of their scores. In these sub-regions, P-PISCOpd and
PISCOpd (PISCOpm) increase the accuracy of the CC to 213%
and 210% (14%) compared to CHIRPMd (CHIRPMm). The
RMSE values show consistent reduction in random error and

the systematic PBIAS is close to 0. For the AE and AAT, the
performance of PISCOp V2.1 continues to indicate
a substantial increase (reduction) of the CC (RMSE) score
with respect to CHIRPM, although these values are worse in
comparison to the PC and AW. This can be explained by
a lower density of raingauges and that TIR-based retrieval
algorithms imply a poorer performance under high influence
of topographic complexity (Thouret et al. 2013, Mantas et al.
2015, Derin et al. 2016). At the monthly time step, PISCOpm
provides higher accuracy in capturing the influence of the
ITCZ migration through the tropical Andes, despite
a remarkable underestimation of the precipitation gradients
for the eastern Andean slopes. In contrast, at the daily time
step, P-PISCOpd and PISCOpd showed a poor performance
that did not lead to any improvement compared to

Figure 4. Spatial distribution of rainfall for January 1998: (a) rainfall network, (b) CHIRPm, (c) CHIRPMm and (d) PISCOpm.
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CHIRPMd. Finally, the AL presented the largest RMSE score
and lowest CC of our study area. Even at the monthly time
step, PISCOpm presented a lower performance than
CHIRPMm. Similar results have recently been reported for
the Ecuadorian Amazon by Ulloa et al. (2017), who state that
the reduced number of raingauges used for the merging phase
generates spatial inconsistencies for the entire analysis period.

According to the categorical indices applied in this study,
both P-PISCOpd and PISCOpd presented similar scores that
were higher than CHIRPMd in the entire study area (Fig. 7).
In general, the detection capacity of the three products weak-
ens as the precipitation intensity category increases (Table 3),
regardless of the geographical position. Comparing the cate-
gories “no rain” and “violent rain”, the POD score decreased
and FAR increased drastically by 452% and 245%,

respectively. The TS showed that the daily products,
CHIRPMd, PISCOpd and P-PISCOpd, were not able to cor-
rectly capture the fraction of rainfall events for all sub-
regions. These results show that these daily PISCOp products
are most likely not sufficiently accurate for capturing heavy
rainfall events. Hence, the use of PISCOp products to
describe the intensity of extreme precipitation events is not
recommended if no high-density rainfall network exists
nearby.

Figure 8 illustrates the water balance evaluation of PISCOp
V2.1, CHIRPM and two other GRDs (PISCOp V1.0 and
HOP) using runoff ratios (RR and RRf). The widest spread
in RR and RRf scores was observed within the Amazon basin,
indicating that PISCOp V.2.1 reaches a similar score to HOP,
while it has an underestimation of 15% for CHIRPM and an

Figure 5. Spatial distribution of rainfall for 25 January 1998: (a) the rainfall network, (b) CHIRPMd, (c) P-PISCOpd and (d) PISCOpd. Only values >1 mm are plotted.
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overestimation of 28% for PISCOp V1.0. For the Amazon, RR
estimates are typically below 0.8 (Costa and Foley 1997,
Rudorff et al. 2014, Gusev et al. 2017), while the average RR
values for PISCOp V.2.1, CHIRPM, PISCOp V1.0 and HOP
are around 0.89, 0.75, 1.05 and 0.88, respectively. Similar
results were found for RRf, with PISCOp V2.1, CHIRPM
and HOP having values close to 1 (–0.2 < RRf < 0.2).
Although these high runoff ratios could be explained by
excessive groundwater contribution (Zubieta et al. 2015),
a rainfall underestimation scenario is a more likely explana-
tion, especially when considering the independent validation
results which indicate the PBIAS trend to be negative (Fig. 6).
The RRf within the Amazon shows that CHIRPM achieves the
best agreement with discharge values. Additionally, the cli-
mate correction based on PISCOpclim (used in CHIRPM and
PISCOp V2.1) led to a better performance than CHPclim
(used in PISCOp V1.0) in order to eliminate the underesti-
mation of rainfall, particularly on the eastern slopes of the
Andes. For catchments covering the Andes or Pacific,
CHIRPM, PISCOp V1.0 and PISCOp V2.1 present very slight

differences in their RR and RRf scores, with values mostly
below 1. Unlike the Amazon, in the Andes-Pacific the change
from CHPclim to PISCOpclim did not affect the areal rainfall
estimations, possibly due to a better distribution and higher
density of the rainfall network. The RRf values of CHIRPM,
PISCOp V2.1 and PISCOp V1.0 exhibited a systematic over-
estimation mainly for catchments >10 000 km2 (Fig. 8). This
uncertainty could be related to streamflow alteration caused
by anthropogenic factors or low ET estimates. However, it is
difficult to predict and beyond the scope of this investigation.

3.4 Impacts and detection of inhomogeneities

All inputs used for the development of PISCOp V2.1 are not
thoroughly homogenized. The Peruvian long-term gauge
dataset is affected by a plethora of non-climatic factors, such
as changes of instruments or bad observer practices (Peterson
et al. 1998, New et al. 2000, Brönnimann 2015). Also, incon-
sistencies are also present in the CHIRP algorithm. For
instance, they arise when infilling missing CHIRP values

Figure 6. Boxplots of continuous statistics (CC, RMSE and PBIAS) between the daily and monthly products of PISCOp V.2.1 and ID. The cross represents the spatial average.
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with the Coupled Forecast System version 2 (Saha et al. 2014),
or in the overlap between the TIR archives: Globally Gridded
Satellite (GriSat) and NOAA Climate Prediction Center
(CPC; Funk et al. 2015a). In order to detect a spatial pattern
in these inhomogeneities, we applied the Pettitt test, with
a significance level of 5%, for annual time series of each
PISCOp V2.1 grid cell, and for the water balance estimation,
we used CHIRPM, PISCOp V1.0, and HOP as a reference.
Figure 9(a) shows the years when a breakpoint was detected.
In general, the three GRDs indicate wide variability in their
breakpoint years and spatial extent. CHIRPM obtained the
smaller inhomogeneity area within the Amazon basin (8.1%),
followed by PISCOp V.2.1 (8.2%), HOP (34%) and PISCOp
V1.0 (89%). The breakpoint year observed for CHIRPM is
associated with the transition from GriSat to CPC, whereas
the breakpoint for PISCOp V1.0 notably coincides with the
changes in the density of the PISCOp rainfall network
(Fig. 3). Regarding PISCOp V2.1 and HOP, the inhomogene-
ity area drastically decreased due to the data gap infilling
performed at each station and a further balancing-out during
the geostatistical interpolation. Although breakpoints in rain-
fall time series can naturally occur, no evidence was found for
any of the 56 raingauges with more than 95% of complete
time series (Fig. 1(a)).

Based on the breakpoints detected for each cell, a sensitive
area (Fig. 9(a)) was defined to analyse the plausibility of the
time series in more detail. As shown in Fig. 8(b), the inten-
sities, breakpoint year at 5% significance level (red dotted
line) and seasonality of the three GRDs at the monthly time
step vary considerably despite using similar inputs. The inho-
mogeneities in the GRDs imply severe impacts for the analy-
sis of the seasonal (not shown here) and annual trend
(Fig. 9(c)). For the assessment of these impacts, Sen’s slope
estimator at the 95% confidence level was used. For the
1981–2016 period, PISCOp V2.1, PISCOp V1.0 and HOP
revealed a significant positive trend that exceeded 55%, 81%
and 72%, respectively, in the slope of CHIRPM. Artificial
trends (Hofstra et al. 2010, Nicolas and Bromwich 2011,
Tozer et al. 2012, Kingdom 2014) are principally spread
across the entire Peruvian Amazon, especially where data
scarcity prevails and there is a high amount of gaps.

4 Summary and conclusions

In this paper, we presented the development of PISCOp V2.1,
a new daily and monthly long-term GRD for the period 1981
to the present. This gridded product was generated based on
the integration of serially complete gauge datasets, CHIRP

Figure 7. Categorical validation statistics of PISCOpd products in five quantile classes of rainfall intensity for the five sub-regions (see Table 3).

HYDROLOGICAL SCIENCES JOURNAL 781



Figure 8. Runoff ratios (RR and RRf) between different GRDs (PISCOp V2.1, CHIRPM, PISCOp V1.0 and HOP) and discharge observations for catchments draining
within the Andes-Pacific (left) and Amazon (right).

Figure 9. (a) Spatial distribution of break year (calculated by Pettit test) in annual time series of PISCOp V2.1, CHIRPM, PISCOp V1.0 and HOP. Only values at 95%
significance level (p < 0.05) are plotted. (b) Areal monthly precipitation for the S1 region. The breaks at 95% significance level are plotted on the vertical dotted (red)
line. (c) Evolution of the average annual rainfall in the S1 region. Only trend lines with a significant level of 95% are plotted.
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data, radar-based climatologies and geostatistical and deter-
ministic interpolation methods. The quality of PISCOp V2.1
was assessed within six hydro-meteorological sub-regions
with an independent raingauge network. Additionality, the
runoff ratio estimation within 19 catchments allowed us to
evaluate the performance of PISCOp V2.1 in more extensive
areas.

For the first time, PISCOp V2.1 comprehensively presents
the state of the Peruvian raingauge dataset for the period
1981–2016. It has been identified that the gaps in rainfall
time series represent the most determining problem for the
construction of a temporally consistent GRDs. This study
shows that the combinations between both CUTOFF and
Qm are a conservative and efficient method for successful
data gap-infilling, especially for large data gaps that prevail
at the beginning of the PISCOp V2.1 period. However, this
method strongly depends on the predictor and the proximity
of raingauges. Hence, it is expected that application of our
approach to areas with low station density and poor perfor-
mance of CHIRPM might lead to unsatisfactory results.

The independent and water balance evaluations confirm that
PISCOp V2.1 is the most suitable product for representing areal
rainfall estimates, except for the Amazon lowland where
CHIRPM had improved outcomes. Additionally, we note that
the climatological correction based on PISCOpclim significantly
improved the results compared to CHPclim. At the daily time
step, PISCOpd did not capture the convective storm intensity,
regardless of the geographical position. Although it seems
highly attractive to use gridded data with full spatial and tem-
poral coverage, such as PISCOp V2.1, all inhomogeneities
inherent to this merged product and presented in this study
must be entirely taken into account. Therefore, as for other
blended GRD products (Yanto et al. 2017, Beck et al. 2017a), we
recommend users to take special care when using PISCOp V.2.1
for the analysis of trends, extreme events or other applications
related to e.g. climate change.

New versions of PISCOp have been planned and it is
expected to make use of new existing information sources,
such as IMERG (Huffman et al. 2015), cross-border raingauges,
as well as to improve the data gap-infilling of rainfall time series.

5 Data access

The PISCOp V2.1 product, source code and additional infor-
mation are freely available to users in NetCDF (1981–2016)
and GeoTIFF (1981–present) format at the following website:
https://piscoprec.github.io/.
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