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Abstract: Quantification of the surface water offer is crucial for its management. In Peru, the low
spatial density of hydrometric stations makes this task challenging. This work aims to evaluate
the hydrological performance of a monthly water balance model in Peru using precipitation and
evapotranspiration data from the high-resolution meteorological PISCO dataset, which has been
developed by the National Service of Meteorology and Hydrology of Peru (SENAMHI). A regional-
ization approach based on Fourier Amplitude Sensitivity Testing (FAST) of the rainfall-runoff (RR)
and runoff variability (RV) indices defined 14 calibration regions nationwide. Next, the GR2M model
was used at a semi-distributed scale in 3594 sub-basins and river streams to simulate monthly dis-
charges from January 1981 to March 2020. Model performance was evaluated using the Kling–Gupta
efficiency (KGE), square root transferred Nash–Sutcliffe efficiency (NSEsqrt), and water balance error
(WBE) metrics. The results show a very well representation of monthly discharges for a large portion
of Peruvian sub-basins (KGE ≥ 0.75, NSEsqrt ≥ 0.65, and −0.29 < WBE < 0.23). Finally, this study
introduces a product of continuous monthly discharge rates in Peru, named PISCO_HyM_GR2M, to
understand surface water balance in data-scarce sub-basins.

Keywords: Peru; water balance model; GR2M; PISCO product; Fourier Amplitude Test

1. Introduction

In Peru, surface water resources are distributed heterogeneously throughout its three
hydrographic regions: Pacific (western Andean slopes and Peruvian coast), Titicaca (en-
dorheic part of the Peruvian altiplano), and Atlantic (Amazon basin). The densely pop-
ulated Pacific slope is characterized by high water stress due to its low water supply
and high demand by its economic activity. In contrast, the sparsely populated Atlantic
slope has a large surplus due to low demand and, above all, because it is supplied by
the Amazon basin [1]. In this context, adequately quantifying water supply is critical
for properly managing and planning water resources in the country [2–4]. However, the
low density of stations and their short-term data records make it difficult to monitor and
forecast streamflows at a national level, so hydrological modeling emerges as a promising
option for complementing the hydrometric records, improving the understanding of the
rainfall-runoff relationship [5,6] and for seasonal hydrological forecasting [7,8]. Implement-
ing a large-scale hydrological model requires precipitation data with wide spatiotemporal
coverage, so the use of satellite precipitation products has become increasingly important
in recent years [9], especially for their application in Peruvian basins with scarce informa-
tion [10]. For example, the recent meteorological gridded product development for the
Peruvian domain called PISCO (Peruvian Interpolated data of SENAMHI’s Climatologi-
cal Observations) [11] might drive a large-scale hydrological model to estimate monthly
discharges at a national level in a data-scarce context.
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Regional hydrological models, unlike local models, requires more effort because of
the ‘problem of regional modeling’ that arises as described by [12] because the model must
be calibrated and validated simultaneously with a large number of hydrometric stations
and with multiple basins of different rainfall and temperature regimes, physiography,
and vegetation cover [13], all without altering the regional representation of hydrological
processes [14]. This characteristic is problematic for quantifying surface runoff in data-
scarce basins, leading to alternative ways to extrapolate hydrological information from
one basin to another [15], commonly following criteria of proximity [16] and hydrological
similarity based on physiographic and hydroclimatic characteristics [17]. Recently, hydro-
logical regionalization techniques have been explored based on empirical relationships
between geomorphological characteristics and model parameters [18], analysis of hydro-
logical dissimilarity [19], streamflow fluctuation [20] and sensitivity [21], machine learning
techniques [12], partial least squares regression and clustering analysis [15,22], principal
components, and self-organization mapping [23].

Currently, there are physically based hydrological models that represent in detail all
the hydrological processes in a basin [24,25]; however, their application in a data-scarce
context would increase uncertainties in different components of the hydrological sys-
tem [26–28]. In contrast, conceptual hydrological models require fewer data, making them
operationally easier and decreasing the computational cost in an extensive domain [29,30].
For instance, the GR2M conceptual model [31] has been widely used in different hydrocli-
matic conditions around the world with satisfactory results [32,33] and even performing
better than other water balance models [34]. Additionally, it is used to assess climate
change effects on water resources [35–37]. In recent years, experiments have been devel-
oped to improve hydrological modeling performance with GR2M, incorporating Bayesian
calibration approaches [38,39] and coupling to fuzzy models [7]. No prior research has been
reported at a national level in this region using the GR2M model. A regional hydrological
simulation that incorporates observed data and provides a dataset of estimated discharges
at river streams in three Peruvian slopes is still challenging. However, in the Amazon basin,
the GR2M model has been applied to assess water resources’ climate change and identify
annual discharge trends [40]. A recent implementation in the Pacific slope also evaluates
multidecadal runoff in a data scarcity condition, showing higher model robustness than
other conceptual models [18]. In ungauged basins, regional GR2M parameter estimation
has been studied in [23] using a regression approach finding unsuitable model results for
basins located under a semi-arid climatic regime. In [41], the GR2M model is applied to
reconstructed monthly river streamflows in 51 gauged sub-basins.

The generation of global and regional hydrological datasets such as the products
Model Parameter Estimation Experiment data (MOPEX) [42] and the Catchment Attributes
and MEteorology for Large-sample Studies (CAMELS) [43], among others, are beneficial for
exploring the behavior of basins [44], anticipating hydrological changes [45] and studying
the impact of human activities on the hydrological cycle [46]. In South America, local
adaptations have been integrated into the CAMELS product, such as the CAMELS-BR [47]
datasets in Brazil and CAMELS-CL [48] in Chile currently used to study the impact of
climate change on water resources and the study of droughts, among others. In this sense,
hydrological modeling at the national level is particularly useful to establish a basis for
constructing a hydrological dataset in Peru.

This study aims to evaluate the hydrological performance of a monthly water balance
model at a national level. For this purpose, the sensitivity analysis of two hydroclimatic
indices is used to define calibration regions, and the GR2M conceptual model is used to
simulate monthly discharges in gauged and ungauged sub-basins from January 1981 to
March 2020. Finally, a new hydrological product in Peru is introduced to provide continu-
ous monthly streamflow information over the country and contribute to understanding the
water balance in data-scarce basins.
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2. Study Area

Peru is located on the west coast of the South American continent. It has an area of
1,285,220 km2 and a population of approximately 32.5 million people. It borders on the west
with the Pacific Ocean, on the north with Ecuador and Colombia, and on the southeast with
Brazil, Bolivia, and Chile. The Andes mountain range creates a complex topography and
introduces hydroclimatic variability along its three hydrographic regions: Pacific, Atlantic,
and Titicaca. This natural orographic barrier traps atmospheric moisture from the Atlantic,
producing high rainfall over the Andean–Amazon region and Amazon lowlands (eastern
side) and low rainfall on the coast (western side) [40], leading to the great contrast of water
resources in the country, characterized by a much larger water supply on the Atlantic slope
than on the Titicaca and Pacific slopes [1]. Rainfall is highly variable in both space and
time [49]. Maximal rainfall rates occur between November and March. Arid conditions
with low rainfall rates characterize coastal areas in the Pacific slope (<~150 mm/year) and
semi-arid conditions (<~400 mm/year) in the western flank of the Andes [18]. The Atlantic
and Titicaca slopes have humid conditions with high rainfall rates in the eastern flank of
the Andes (~1100 mm/year), the Andes–Amazon transition (~3200 mm/year), and the
Amazon lowland (~2550 mm/year) [11]. Mean annual temperature fluctuations over the
country appear indirectly related to elevation (lower altitude, more temperature).

In this work, the study domain corresponds to the entire Peruvian territory, including
transboundary basins with Ecuador, Colombia, and Brazil. It has an approximate total
drainage area of 1,480,620 km2 (Figure 1). Moreover, 3594 river streams and sub-basins
with a median area of 300 km2 (with extremes values of 40 km2 and 2500 km2) were
delimited to obtain fine streamflow spatialization according to meteorological inputs
resolution (~10 × ~10 km) and considering a unique river stream by sub-basin to compute
flow accumulation. In Figure 1, gauged areas correspond to drainage areas covered by a
hydrometric station, while ungauged areas correspond to areas without any hydrometric
control downstream.

Figure 1. (a) Study area and hydrometric stations in the Pacific, Titicaca, and Atlantic slopes. De-
tail of (b) sub-basins and (c) river streams used for the semi-distributed hydrological model at a
national level.

3. Data and Methods

The methodology used in this study is outlined in Figure 2. The details of the data
and methods used are shown below.
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Figure 2. Methodological framework. Where: P = precipitation, PET = Potential Evapotran-
spiration, Q = Discharge, WFAC = Weighted Flow Accumulation, FAST = Fourier Amplitude
Test, RR = Rainfall-Runoff Index, RV = Runoff Variability Index, and SCE-UA = Shuffle Complex
Evolutionary Algorithm.

3.1. Hydrometeorological Data
3.1.1. The PISCO Dataset

Currently, the PISCO product is only a dataset with a daily and monthly temporal
resolution for the variables of precipitation (P), air temperature (TMP), and potential
evapotranspiration (PET). It has a spatial coverage throughout the Peruvian territory,
including transboundary basins with Ecuador, Colombia, and Brazil. In its stable version,
PISCO is only available from 1981 to 2016. However, an unstable version of the precipitation
sub-product used for operative purposes is available from 1981 to the present day, and
it is updating daily. The gridded precipitation sub-product (0.1◦ × 0.1◦) is generated
by applying geostatistical techniques to combine satellite estimates of precipitation data
from the CHIRP project (Climate Hazards InfraRed Precipitation) and ground data of the
SENAMHI pluviometric network [11]. Similarly, the temperature sub-product (0.1◦ × 0.1◦)
is generated by combining air temperature data from MODIS images and observations
from weather stations. The evapotranspiration sub-product (0.1◦ × 0.1◦) is generated
from the previous temperature-gridded data following the methodology proposed by [49].
The PISCO dataset is available on the IRI Data Library: http://iridl.ldeo.columbia.edu/
SOURCES/.SENAMHI/.HSR/.PISCO (accessed on 20 March 2019).

In this work, the mean areal values of P and PET are calculated for each of the 3594 sub-
basins from January 1981 to March 2020 and then are continuously updating for operational
purposes of the continuous monthly streamflows estimation. Due to our hydrological
model’s operational purpose, the precipitation sub-products unstable version was used in
this study. In contrast, in evapotranspiration, we only use climatological values due to the
lack of data since January 2017.

http://iridl.ldeo.columbia.edu/SOURCES/.SENAMHI/.HSR/.PISCO
http://iridl.ldeo.columbia.edu/SOURCES/.SENAMHI/.HSR/.PISCO
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3.1.2. Discharge Data

In this work, monthly observed streamflows at 43 hydrometric stations were selected
from January 1981 to March 2020. Most of these stations belong to the National Service of
Meteorology and Hydrology of Peru (SENAMHI, https://www.gob.pe/senamhi, accessed
on 13 March 2021). Specifically, in the Amazon region (Atlantic slope), most of the stations
are monitored by the SENAMHI and the IRD (French Institute for Sustainable Develop-
ment) in the frame of the HYBAM Project (https://hybam.obs-mip.fr/, accessed on 25
March 2021). The detail of selected stations is summarized in Table 1, and their distribution
throughout the Peruvian territory is shown in Figure 1a. The selection processes considered
stations with more than 10% coverage in the study period (1981–2020), stations with high
quality of data, and stations located in basins that guarantee coverage throughout the
national territory. Finally, a total of 74.8% of the study area is gauged by the 43 hydrometric
stations selected, and only 25.2% correspond to ungauged areas.

Table 1. Hydrometric stations selected for hydrological modeling at a national level. Coverage [%] is considering from
January 1981 to March 2020.

Slope Station Abrev. Latitude [◦S] Longitude [◦W] Watershed Source Coverage [%]

Pacific

Huatiapa HUA −16.008 −72.484 Camaná SENAMHI 45.3
Socsi SOC −13.029 −76.195 Cañete SENAMHI 92.9

Santo Domingo SDO −11.384 −77.050 Chancay-Huaral SENAMHI 66.0
Racarumi RRI −6.633 −79.317 Lambayeque SENAMHI 99.8

Salinar SAL −7.661 −78.961 Chicama SENAMHI 92.1
Obrajillo OBR −11.452 −76.622 Chillón SENAMHI 58.8

El Ciruelo ECI −4.300 −80.150 Chira SENAMHI 97.6
Malvados MAL −10.340 −77.630 Fortaleza JU FORTALEZA 31.2
Pte. Ocoña POC −16.422 −73.115 Ocoña SENAMHI 33.3
Letrayoc LET −13.640 −75.720 Pisco SENAMHI 89.5

Pte. Sánchez
Cerro PSC −5.194 −80.623 Piura PE CHIRA

PIURA 49.1

Condorcerro CCO −8.658 −78.262 Santa PE
CHAVIMOCHIC 98.1

Pte. Santa Rosa PSR −17.030 −71.690 Tambo JU TAMBO 92.9
El Tigre ETI −3.769 −80.457 Tumbes SENAMHI 97.4
Chosica CHO −11.930 −76.690 Rímac SENAMHI 54.7

Titicaca

Pte. Huancané HNE −15.216 −69.793 Huancané SENAMHI 79.7
Pte. Ramis RAM −15.255 −69.874 Ramis SENAMHI 72.4

Pte. Unocolla COA −15.451 −70.192 Coata SENAMHI 74.6
Pte. Ilave ILA −16.088 −69.626 Ilave SENAMHI 72.6

Atlantic

Egemsa Km105 EKM −13.183 −72.533 Urubamba SENAMHI 86.1
Borja BOR −4.470 −77.548 Marañón HYBAM 86.5

Jesús Tunel JTU −7.221 −78.404 Crisnejas SENAMHI 97.9
Cumba CUM −5.944 −78.661 Marañón SENAMHI 13.7

Los Naranjos LNA −5.756 −78.432 Marañón SENAMHI 17.5
Puente Tocache TOC −8.181 −76.506 Huallaga SENAMHI 58.3

Tingo María TMA −9.290 −76.003 Huallaga SENAMHI 51.9
Picota PIC −6.949 −76.325 Huallaga SENAMHI 42.3

Chazuta CHA −6.570 −76.119 Huallaga HYBAM 41.7
Paucartambo PAU −13.321 −71.594 Urubamba SENAMHI 28.8

Pisac PIS −13.422 −71.855 Vilcanota SENAMHI 66.5
Pte. Cunyac PCU −13.560 −72.574 Apurímac SENAMHI 26.5
Pte. Stuart PST −11.802 −75.490 Mantaro ELECTROPERU 68.8
Puerto Inca PUI −9.384 −74.968 Pachitea HYBAM 43.8
Tamshiyacu TAM −4.003 −73.162 Amazonas HYBAM 90.6

Requena REQ −5.030 −73.830 Ucayali HYBAM 58.5
Lagarto LAG −10.607 −73.871 Ucayali HYBAM 23.1

Bellavista BEL −3.482 −73.073 Napo HYBAM 71.2
Pte. Corral
Quemado PCQ −5.755 −78.692 Marañón SENAMHI 13.7

La Pastora LPA −12.584 −69.214 Madre de Dios HYBAM 24.4
Napo NAP −0.917 −75.396 Napo HYBAM 40.6

Tabatinga TAB −4.250 −69.950 Amazonas HYBAM 87.6
Pucallpa PUC −8.390 −74.530 Ucayali HYBAM 43.6
San Regis SRE −4.513 −73.907 Marañón HYBAM 53.0

3.2. Semi-Distributed GR2M Model

In this study, the GR2M conceptual model [50] simulates monthly runoff in 3594 sub-
basins. The GR2M model transforms rainfall into runoff by two equations: production and
transfer functions [51], and requires monthly input data of precipitation (P) and potential
evapotranspiration (PET). P is distributed in the upper storage tank (S) with limited

https://www.gob.pe/senamhi
https://hybam.obs-mip.fr/
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capacity and the underground storage reservoir (R). Besides, GR2M has two calibratable
parameters (X1 and X2), where X1 defines the maximum capacity of S and X2 defines
the exchange between R water outside the basin. Because GR2M is a lumped model, the
simulated runoff in each sub-basin is then routed (as FlowAcum) considering the flow
direction (FlowDir) generated from a 90 m HydroSHEDS Hydrologically Conditioned
Digital Elevation Model (CONDEM) [52] and a Weighted Flow Accumulation (WFAC)
algorithm where the simulated runoff gives the weighting factor (Weight) in each sub-basin.
For example, at time step t = 1, the monthly runoff (q) is first calculated for each sub-basin
in the study area. Then the Weight is created by rasterizing the sub-basins based on the flow
direction raster and associating the value of q to the pixel corresponding to the centroid of
each sub-basin, as appropriate. Finally, the WFAC is used to accumulate the values of q and
obtain a raster map with the values of discharges (Q) for each river stream. This process is
repeated for each time step. The scheme of the semi-distributed GR2M adaptation for a
national level modeling is shown in Figure 3.

Figure 3. Framework to calculate accumulated discharges from sub-basins to river streams in a semi-distributed GR2M
adaptation. Where: q = runoff in mm, CONDEM = Hydrologically Conditioned Digital Elevation model, FlowDir = Flow
Direction, WFAC = Weighted Flow Accumulation, FlowAcum = Flow Accumulation, and Q = discharges in m3/s.

In this work, the GR2M model incorporated in the airGR R package [52] was used
together with adaptations to calculate P and PET’s areal means from gridded data, run
the semi-distributed GR2M model using the WFAC algorithm, and automatically calibrate
the model parameters. As a result of this process, an experimental R package called
GR2MSemiDistr was generated and is free available on https://github.com/hllauca/GR2
MSemiDistr (accessed on 13 March 2021).

3.3. Sensitivity Analysis

Similar to [53], the spatial patterns and the magnitude of the relative sensitivities of
X1 and X2 concerning two hydroclimatic indices are considered the basis for delimiting
the homogeneous calibration regions at a national level. Unlike studies that perform a
sensitivity analysis (SA) using metrics such as the Nash-Sutcliffe efficiency index [54], this
study examines the sensitivity based on the runoff rate (RR) and the runoff variability (RV)
hydroclimatic indices proposed by [55]. Table 2 describes both indices and their respective
equations. Fourier amplitude sensitivity testing (FAST) [56] was applied using the fast R
package of [55] to calculate the relative sensitivities of X1 and X2 for both indices in all

https://github.com/hllauca/GR2MSemiDistr
https://github.com/hllauca/GR2MSemiDistr
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sub-basins. An ensemble of 1000 unique and uncorrelated parameters was generated. The
GR2M model was then run at a national level for each ensemble member using the same P
and PET forcing data, yielding thousands of streamflows time series and RR and RV indices.
Finally, a Fourier transformation is applied to RR and RV, and results are scaled from 0 to 1
to obtain the X1 and X2 relative sensitivities. Zero values indicate a low sensitivity of the
hydroclimatic index to a GR2M parameter variation, and 1 indicates a high sensitivity. The
details of the FAST methodology are found in [57].

Table 2. Hydroclimatic indices used for the sensitivity analysis (SA).

Index Unit Equation Description

Runoff Ratio (RR) - RR = X
P The ratio of simulated runoff to precipitation

Runoff Variability (RV) - RV = σX
σP

The standard deviation of simulated runoff to
the standard deviation of precipitation

Note: X, simulated runoff in mm; P, rainfall in mm; σX,P, standard deviation of simulated runoff and rainfall.

3.4. Calibration Regions and Sub-Regions

RR and RV’s relative sensitivities calculated in the previous section and proximity
variables (latitude and longitude) concerning each sub-basin’s centroid were used for clus-
ter analysis. Then, Ward’s hierarchical clustering method based on L-moment statistics [58]
was used to divide the sub-basins into homogeneous regions. Finally, the regions are
hydrologically conditioned according to the discordancy and heterogeneity statistics done
in [59] and including at least one hydrometric station in the calibration region. In the
absence of a station within the previously defined region, neighboring regions are merged
to ensure this condition.

Due to the low density of hydrometric stations in the study area providing a long
record of monthly streamflows for the model calibration (Figure 1a and Table 2) and the
effect of equifinality of the parameters [60], sub-regions are restricted to the portion-gauged
by hydrometric stations within each calibration region. These sub-regions are defined by
superimposing the calibration regions and gauged areas’ boundaries (Figure 1a). Thus,
there will be as many sets of calibrated GR2M parameters for a given region as there
are sub-regions within it. In the case of ungauged areas, only the calibration regions
are considered.

3.5. GR2M Calibration and Validation Strategy

In this work, 43 hydrometric stations are used to calibrate and validate Peru’s water
balance model. The selected calibration period for the hydrometric stations ranging from
60 to 70% of their available records. The P and PET climatologies (1981–2010) were used to
fill data between January 1978 and December 1980 and consider them a warm-up period for
national simulation. Parameters X1 and X2 were automatically calibrated using the Shuffled
Complex Evolutionary (SCEA-UA) algorithm [61], considering the Kling–Gupta efficiency
criterion (KGE) [61] as an objective function similar to [62] with an emphasis on high flows.
The square root transferred Nash–Sutcliffe efficiency (NSEsqrt) [62] is used to evaluate
model performance in general flows, and the Water Balance Error (WBE) [63] was used to
assess the model bias. The summary of the statistical metrics used and their corresponding
equations are shown in Table 3. The validation process consisted of evaluating the model’s
outputs based on the previously calibrated parameters using the remaining 30–40% of the
available streamflow records.
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Table 3. Statistical metrics and their corresponding equations used for evaluating the hydrological performance of
GR2M model.

Statistical Metric Unit Equation Optimal Value

Kling–Gupta efficiency (KGE) -

KGE = 1−
√
(r− 1)2 + (α− 1)2 + (β− 1)2

r = ∑n
i=1[(Xi−X)(Oi−O)]√

∑n
i=1(Xi−X)

2
√

∑n
i=1(Oi−O)

2

α = σX
σO

; β =
µX
µO

1

Nash–Sutcliffe Squared
(NSEsqrt)

- NSEsqrt = 1− ∑n
i=1(
√

Oi−
√

Xi)
2

∑n
i=1

(√
Oi−
√

O
)2

1

Water Balance Error (WBE) - WBE = ∑n
i=1(Oi−Xi)
∑n

i=1 Oi
0

Note: n, number of samples; Oi, observed streamflow; Xi, simulated streamflow.

The model calibration and validation were performed in gauged areas, and a stepwise
calibration strategy was used in this study (sub-region approach, Figure 4). In the first step,
the parameters of headwater sub-basins are calibrated and are used downstream, while in
the last step, only the parameters of the remaining sub-basins are calibrated. The sub-basins
of the Pacific and the Titicaca slopes were calibrated in a unique step, while for the Atlantic
slope, seven steps were required. Finally, after model calibration and validation for each
sub-region, X1 and X2 values are grouped by calibration region at a national level.

Figure 4. Strategy for the GR2M model calibration at a national level. Steps are based on the stream
network configuration and location of the hydrometric stations in gauged areas. Each basin might
contain more than one set of X1 and X2 parameters. Gray areas correspond to ungauged areas.
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3.6. Discharge Simulation at a National Level

The median of X1 and X2 is calculated for each calibration region to simulate monthly
discharges in ungauged areas (regional approach). To assess the model performance
when using the median of X1 and X2 as a representative parameter for each calibration
region, the GR2M model was again run-in gauged areas, and new statistical metrics
were calculated. Moreover, changes in model performance before and after applying the
median of parameters by calibration regions were evaluated. Finally, a new model run
including gauged and ungauged areas was executed to simulate monthly discharges in
3594 river streams.

4. Results
4.1. Sensitivity Analysis and Calibration Regions

The relative sensitivities derived from the FAST analysis using the RR and RV indices
for each of the 3594 sub-basins throughout the study area are shown in Figure 5a. Because
the GR2M model has only two parameters, the patterns of relative sensitivities to X1 and
X2 are inverse. This study assesses the hydrological response in terms of the magnitude
(RR) and variability (RV) of the rainfall–runoff relationship. RR and RV indices are more
sensitive to X2 over much of the study area. Especially on the Pacific slope, RR has high
sensitivities to X2 in coastal sub-basins but declines slightly towards the Andes’ western
flank. On the Titicaca and Atlantic slopes, moderate to high sensitivities to X2 is observed,
except for the central part of the Amazon extending southeast and to part of the North
Pacific, where there are high sensitivities to X1. In RV, spatial patterns are like RR but with
greater sensitivities relative to X2 in the major part of the Atlantic and the Titicaca slopes,
while in the Pacific slope, sensitivities to X1 increase in the west flank of the Andes and the
North Pacific sub-basins.

Figure 5. (a) Relative sensitivities of RR and RV indices obtained from FAST. (b) Delimited calibration
regions and sub-regions for the GR2M model at a national level, each region contains at least one
hydrometric station.

The clustering analysis results incorporating the relative sensitivity patterns of RR
and RV at a national level are shown in Figure 5b. The lack of hydrometric information
in some of the initial regions meant having to merge contiguous regions, so 14 regions
were identified throughout the study area. In the coast of the Pacific, three regions were
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identified (F, L, and N); in the Andes–Amazon transition, five regions were obtained (C, G,
I, J, and M), while six regions (A, B, D, E, H, and K) were obtained in the Amazon lowlands.
It was ensured that there was at least one hydrometric station for each of the calibration
regions (as is the case for regions B, E, and K), while in some cases, regions with more than
five stations (M and C) were obtained (Table 4).

Table 4. Resume of calibration regions delimited for the study area, including gauged and
ungauged areas.

Calibration Region Number of
Sub-Regions

Number of
Sub-Basins

Number of
Hydrometric

Stations

A 8 380 2
B 6 346 1
C 13 239 6
D 6 385 5
E 2 229 1
F 6 158 5
G 10 190 2
H 7 269 2
I 6 316 3
J 6 220 2
K 2 258 1
L 8 159 4
M 12 324 7
N 4 121 2

Total 96 (100.0%) 3594 (100.0%) 43 (100.0%)
Gauged area 84 (87.5%) 2605 (72.5%) 43 (100.0%)

Ungauged area 12 (12.5%) 989 (27.5%) 0 (0.0%)

Finally, overlapping the boundaries of gauged and ungauged sub-basins (Figure 4)
with the 14 calibration regions (Figure 5b) generated 96 sub-regions (Table 4), which
corresponds to 96 different sets of GR2M parameters. Of these, 84 parameter sets are
estimated by model calibration (sub-region approach), while the remaining 12 were inferred
based on the median values for each calibration region (regional approach).

4.2. Model Performance Assessment

Figure 6 shows the spatial distribution of the three metrics selected to assess the
monthly water balance model’s performance at a national level during its calibration,
validation, and entire period. In terms of KGE and NSEsqrt, the model performs well
during the calibration period, with values above 0.75 and 0.65, respectively, at stations on
the Pacific and the Andes–Amazon transition; however, low values of KGE and NSEsqrt
(<0.50) predominate at stations on the Amazon lowlands. Performance remains the same
during validation but with a slight decrease in the KGE and NSEsqrt metrics at stations
belonging to the Andes–Amazon transition. Regarding the WBE, balance errors close to
zero during the calibration period are observed at stations with high KGE and NSEsqrt
values, except for positive balance errors not greater than 0.25 at stations in the Amazon
lowlands. Negative balance errors increase in the validation period, up to −0.38 on the
Pacific coast and the Andes–Amazon transition.
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Figure 6. (a–c) Statistical metrics for evaluating the GR2M model performance at a national level
during the calibration, the validation, and the total period. In terms of the KGE and NSEsqrt metrics,
cold colors represent good model performance while warm colors represent inadequate model
performance. In WBE, blue colors are associated with the underestimation of the total volume of
surface runoff and red colors indicate the overestimation.

When evaluating the total period, good model performance in terms of KGE
(KGE ≥ 0.75) is maintained for 71% of the stations. In the same period, NSEsqrt values
higher than 0.65 for 70% of the stations demonstrate a good representation of the sub-
basin’s general flows. In terms of the WBE, negative values of not less than −0.20 are
evident at most of the stations with high KGE and NSEsqrt values, and positive values of
not more than 0.23 are evident for the Amazon lowlands. This behavior indicates that
stations with a good fit in terms of KGE and NSEsqrt tend to slightly overestimate the total
runoff, while on the Amazon lowlands, it tends to be underestimated.

Figure 7 shows the observed and simulated monthly and annual hydrographs and
their respective seasonal variation curves for two hydrometric stations on the Pacific slope
(ETI and SOC), one on the Titicaca slope (HNE), and three on the Atlantic slope (EKN,
TOC, and PUC), corresponding to stations with extensive streamflow records from January
1981 to March 2020 (Table 1). In all cases, the model manages to represent the seasonal
and interannual variability of the observations in both small basins of 65 m3/s average
annual flow (Cañete basin) up to basins with 9000 m3/s (Ucayali basin). The simulated
series fit very well to the observations at most of the stations evaluated, except for SOC,
where the wet season’s streamflows (December–March) were slightly overestimated. At
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an annual scale, the model can represent very dry (e.g., 1991 and 1992) to very wet years
(e.g., 1997) in sub-basins of the three Peruvian slopes. The seasonal variation curves
adequately represent the peak flow month, except for the PUC station, where there is one
lag month (Figure 7d). This adequate seasonal and interannual representation is repeated
in the remaining hydrometric stations (not shown), except for those located in the Amazon
lowlands, where the monthly model performs poorly in terms of NSEsqrt (Figure 6b).

Figure 7. Observed and simulated monthly and annual discharges (Qm), and seasonal variation curves, for six represen-
tatives’ hydrometric stations in the (a,b) Pacific, (c) the Titicaca, and (d–f) the Atlantic slopes, with more extended data
availability from January 1981 to March 2020.

The variation of the calibrated GR2M model parameters in the gauged areas is shown
in the boxplots of Figure 8a,b. In [31] reports that X1 could take values from 0.1 to 2000 mm
while X2 could vary between 0 and 2. There are slight variations of X1 and X2 in calibration
regions located in the south of the country (J, K, L, M, and N; see Figure 5b) and north-
central coast regions (F; see Figure 5b). Also, there are slight variations of X1 and high
variation of X2 in calibration regions located in the northeast of the country (B, D, and E;
see Figure 5b), predominantly in the Amazon lowlands. Additionally, we identified high
variations of X1 values and low variations of X2 in regions of the north-central Andes (A,
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C, H, and I; see Figure 5b). Only in the calibration region G, high variations in both X1
and X2 values are present (Figure 8a,b). It is important to notice that regions with high X2
variations in Figure 8a,b coincide with stations of low performances in terms of KGE and
NSEsqrt (Figure 6a,b). In contrast, the regions with smaller variations in both X1 and X2
parameter values correspond to stations with a good model fit.

Figure 8. Boxplot of calibrated (a) X1 and (b) X2 parameters for each calibration region. (c–e) Scatterplot of statistical
metrics used for evaluating model performance changes using calibrated GR2M model parameters by sub-regions (Sub)
and applying the median of X1 and X2 for each calibration region (Reg).

Figure 8c–e shows the model performance variation before (sub-region approach—
Sub) and after (regional approach—Reg) applying the median of GR2M parameters by
each calibration region. In terms of the KGE and NSEsqrt, the model performance using
the regional approach (Figure 8c,d) declines mainly in sub-basins of the A–D regions (see
Figure 5b) and is relatively stable (except for region M) in south-central regions. Since
ungauged areas are located predominantly in regions F, L, and N, the regional approach of
parameters in these sub-basins is suitable for estimating monthly discharges.

4.3. Product of Simulated Monthly Discharges at a National Level

The regionalization based on sensitivity analysis of GR2M parameters at a national
level and using the meteorological (P and PET) PISCO dataset allows simulating contin-
uous monthly discharges in 3594 rivers streams (including ungauged areas) from Jan-
uary 1981 to March 2020. This new product of simulated monthly discharges named
PISCO_HyM_GR2M is available at https://doi.org/10.6084/m9.figshare.14382758 (ac-
cessed on 7 April 2021), and it is the new hydrological sub-product of the PISCO dataset.
Additionally, it will contribute to the understanding of the water balance in data-scarce
basins. For instance, the PISCO_HyM_GR2M product is currently used for drought mon-
itoring in the National Service of Meteorology and Hydrology of Peru (available on-
line: https://www.senamhi.gob.pe/?p=monitoreo-pronostico-sequias—accessed on 14
January 2021).

https://doi.org/10.6084/m9.figshare.14382758
https://www.senamhi.gob.pe/?p=monitoreo-pronostico-sequias
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The qualitative classification of the PISCO_HyM_GR2M simulations, based on KGE [63]
and NSEsqrt [64] performance categories for gauged areas are shown in Figure 9a,b, respec-
tively. Both metrics agree that simulated monthly discharge in the central and southern
of the study area are well represented, while those for the northeast (Amazon lowlands)
should be interpreted with caution. The latter varies depending on the hydrograph assess-
ment approach because the KGE metric emphasizes high flows [65], while NSEsqrt reduces
this effect and emphasizes the general representation of streamflows [64].

Figure 9. Qualitative ratings of streamflow simulation result at 43 hydrometric stations across the study area, based on (a)
KGE and (b) NSEsqrt values.

5. Discussion
5.1. Sensitivity Analysis and Calibration Regions

In this paper, two conceptual parameters’ relative sensitivities are used as main pre-
dictors to define calibration regions at a national level similar to [21], instead of traditional
climatic and physiographical characteristics [15]. Despite the differences between objective
functions selected (RR and RV, Table 2), the spatial patterns of relative sensitivities for
GR2M parameters are very similar in both cases (Figure 5a) due to the parsimonious model
structure [31,34], finding that X2 is the most sensitive parameter for RR and RV indices in a
great number of sub-basins due to its correction role in runoff generation [18] instead of X1
in charge of controlling soil moisture in the production storage. In terms of GR2M outputs,
we found that a slight variation of X2 (controlling the routing storage) can significantly
alter the rainfall–runoff transformation in many basins nationwide due to changes in the
magnitude and variability of the simulated runoff.

The results showed main differences in RR and RV sensitivities spatial patterns in the
Pacific Slope (see Figure 5a) due to X2—that controls water exchange and groundwater
fluxes as mention in [65]—is more relevant for RR in coastal sub-basins where GR2M runoff
is base flow-dominated [66] than in mountain ranges areas where X1 has more relative
sensitivity for RV. However, in the behavior in the central-northern Amazonian region
(Atlantic slope), abrupt changes in X1-X2 sensitivities might be more related to model
inputs biases and structural uncertainties that propagate to model parameters and outputs.

As the regionalization approach is based on the sensitivity analysis of a parsimonious
conceptual model (see Section 3.3), calibration regions delimited (Figure 5b) represent areas
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with a similar level of parameter uncertainties [65] and hydrological model response [65],
instead of providing similarities of geomorphological and climatic such as present in [66].
Thus, calibration regions generated in this work are only valid for the GR2M water balance
model using the PISCO product as meteorological inputs.

In addition to the relative sensitivities calculated in this work, the hydrometric net-
work at the national level plays an important role in the final delimitation of the calibration
regions and sub-regions (Figure 5b) because the existence of at least one of them is a deter-
mining factor. In this sense, unlike the studies by [67] where parameter uncertainty bounds
are identified based on residuals analysis of hydrometric stations by region, the low density
of stations (Figure 4), mainly on the north Atlantic slope, could be altering the natural
grouping of sub-basins and thus reducing the predictive capacity of regional parameters of
the GR2M model (see Section 4.2) based on a sensitivity analysis. Future studies will assess
regional parameter uncertainty in uncontrolled areas and impact discharge estimation.

5.2. Model Simulations at a National Level

The unsatisfactory results in the northern Amazonian region (Figure 9) reflects two
issues: first, the greater uncertainty of the spatial rainfall distribution in the Marañón [49],
Ucayali and Huallaga [49,68] basins, and the PISCOP sub-product biases probably because
of the lack of adequate rainfall estimates in equatorial regions [11]. This lower model
performance is similar to that were obtained in [67,68] using different hydrological models
in a daily timestep and different sets of satellite precipitation products. Thus, rainfall
uncertainties propagate to model outputs and reduce the model’s predictable capacity [26].
Additionally, PET climatology used in this paper for operational purposes might not be
reflecting actual evapotranspiration in the Amazon plain. Future works will incorporate a
robust assessment of evapotranspiration in the hydrological modeling with a data scares
scenario and its impacts on the water balance.

Secondly, floodplain plays a key role in the flow routing, with a large amount of water
stored during the flood [69]. For instance, in the Ucayali basin, the flood peak is delayed
by two months between the LAG and REQ stations [70,71]. These behaviors might alter
basins storage and delay months of peak flow in basins with larger drain areas such as
the Amazon plain, and GR2M routing might not represent this characteristic such as PUC
station in Figure 7d.

It is also important to consider that GR2M is a model with limitations due to the
conceptualization of hydrological processes in two reservoirs (production and routing) in
a lumped modeling approach [33]. Despite its outstanding performance throughout the
national territory (Figure 6), it may not be able to adequately represent runoff in basins
with large drainage areas (>200,000 km2) such as in the Amazon plain. Future works will
incorporate routing models such as the Routing Application for Parallel computatIon of
Discharge (RAPID) [72] to improve flow routing throughout the national drainage network,
especially in the Atlantic slope.

6. Conclusions

This study evaluated a monthly water balance model’s hydrological performance in
3594 sub-basins and river streams in Peru. Parameter calibration regions were defined
based on the sensitivity analysis of two hydroclimatic indices. Finally, the monthly simu-
lated streamflows product named PISCO_HyM_GR2M from January 1981 to March 2020
was developed. The main conclusions are summarized below:

(a) The hydrological performance of the GR2M model in Peru performed well in sub-
basins of the Pacific slope and the Andes–Amazon transition (part of the Titicaca and
the Atlantic slopes). The model adequately represents the seasonality and interannual
variability of the streamflows, except for the Amazon lowlands, where only high
flows are well-represented.

(b) Through the monthly meteorological PISCO sub-products, it is possible to simulate the
runoff volume over most of Peru adequately. However, the uncertainties associated
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with these sub-products are more significant towards the north of the country where
there are not enough meteorological stations, so this error propagates towards the
hydrological model outputs for the Amazon lowlands.

(c) The proposed methodology to define the calibration regions based on the spatial
patterns of two hydroclimatic indices’ relative sensitivities proved to be an appropriate
technique for calibrating and validating the GR2M model and estimating monthly
discharge in ungauged sub-basins.

The results presented in this work also demonstrate the enormous potential of the
PISCO_HyM_GR2M product for understanding the dynamics of surface water resources in
Peru. Future versions of this product will include an extensive analysis of different routing
methods and the uncertainty analysis of discharges.
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