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ABSTRACT

The Tropical Rainfall Measuring Mission 3B42 precipitation estimates are widely used in tropical regions

for hydrometeorological research. Recently, version 7 of the product was released. Major revisions to the

algorithm involve the radar reflectivity–rainfall rate relationship, surface clutter detection over high terrain,

a new reference database for the passive microwave algorithm, and a higher-quality gauge analysis product

for monthly bias correction. To assess the impacts of the improved algorithm, the authors compare the

version 7 and the older version 6 products with data from 263 rain gauges in and around the northern Peruvian

Andes. The region covers humid tropical rain forest, tropical mountains, and arid-to-humid coastal plains.

The authors find that the version 7 product has a significantly lower bias and an improved representation of

the rainfall distribution. They further evaluated the performance of the version 6 and 7 products as forcing

data for hydrological modeling by comparing the simulated and observed daily streamflow in nine nested

Amazon River basins. The authors find that the improvement in the precipitation estimation algorithm

translates to an increase in themodelNash–Sutcliffe efficiency and a reduction in the relative bias between the

observed and simulated flows by 30%–95%.

1. Introduction

The Tropical Rainfall Measuring Mission (TRMM)

produces global estimates of precipitation based on re-

mote observations. The product of the 3B42 algorithm

[hereafter referred to as the TRMM Multisatellite Pre-

cipitation Analysis (TMPA)], which is high in spatial

(0.258) and temporal (3 h) resolution, is a widely used

forcing dataset for hydrometeorological applications such

as hydrological modeling, especially in data-sparse re-

gions (e.g.,Awadallah andAwadallah 2013; Li et al. 2012;

Khan et al. 2011; Wagner et al. 2009; Asante et al. 2008;

Su et al. 2008).

There is consensus among studies using TMPA in and

near tropical mountain regions (e.g., Ward et al. 2011;

Scheel et al. 2011; Condom et al. 2011; Dinku et al. 2010;

Nair et al. 2009; Bookhagen and Strecker 2008) about

the limitation of the data, in particular, the poor quan-

tification of high-precipitation events, which are the prev-

alent form occurring in regions highly influenced by the

intertropical convergence zone (ITCZ). As TMPA com-

bines remote observations such as TRMM precipitation

radar (TPR), passive microwave (PMW), and infrared

(IR) from multiple low-Earth-orbiting and geostationary

satellites and ground observations (Huffman et al. 2007),
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various explanations for the estimation uncertainty are

possible.

For example, the TMPA algorithm relies heavily on

cloud-top (IR) temperatures from TRMM’s onboard in-

struments, as well as from other participating geosta-

tionary satellites in between TRMM satellite overpasses,

as proxy measurements of rain [‘‘colder clouds pre-

cipitate more’’ (Huffman et al. 2010, p. 10)]. It has been

argued that in tropical mountain regions, the tempera-

tures of orographic clouds well exceed the rain–no rain

threshold imposed in the algorithm that can cause an un-

derestimation of precipitation (Dinku et al. 2010). Indeed,

estimates solely based on IR measurements, such as Pre-

cipitation Estimation from Remote Sensing Information

Using Artificial Neural Networks (PERSIANN; Hsu

et al. 1997), have been found to underperform other

satellite precipitation products in mountainous envi-

ronments (Thiemig et al. 2012; Ward et al. 2011). Esti-

mation using PMW observations has a stronger physical

basis but remains problematic with warm rain clouds

deficient in ice particles (Huffman et al. 2010; Dinku

et al. 2010). The PMW sensor may also be insensitive at

the scale of measurement, leaving very localized heavy

rainfall cells undetected (Thiemig et al. 2012). Addi-

tionally, TMPA’s poor estimation of extremes has been

attributed to the optimization of the TPR’s reflectivity–

rainfall rate (Z–R) relationship over moderate pre-

cipitation rates, given their higher occurrence (Thiemig

et al. 2012). Notwithstanding these limitations, it has

also been shown with the TRMM 2A25 product (TPR-

based estimates that feed into the 3B42 algorithm) that

clear precipitation gradients can be observed over larger

temporal scales over the Andes (Nesbitt and Anders

2009).

The TMPA version 6 algorithm is described in Huff-

man et al. (2007), while changes in the version 7 algo-

rithm at various processing levels are described in

Huffman et al. (2010) and Huffman and Bolvin (2013)

and are summarized here. They include the newGoddard

profiling algorithm (GPROF) 2010 algorithm for PMW-

based estimation that references TRMM’s available

records of storm profiles, PMW brightness temperatures,

and precipitation rates, replacing a reference database

constructed using a cloud model in version 6. Addition-

ally, the TMPA version 7 also incorporates more obser-

vation datasets at different detection ranges than does

version 6, notably, the 10-km resolution IR data to

replace the Global Precipitation Climatology Centre

(GPCC) histograms used in the early part of the time

series (1997–2000) and the full time series of Micro-

wave Humidity Sounder (MHS) and Special Sensor

Microwave Imager/Sounder (SSM/IS) observations. A

single-calibration reprocessed Advanced Microwave

Sounding Unit-B (AMSU-B) dataset from the National

Oceanic and Atmospheric Administration (NOAA)

satellite also replaces the prior version, for which two

different calibration periods were used, thus removing

some of the internal inconsistency present in TMPA

version 6 (Huffman et al. 2007). Furthermore, the algorithm

implements a final step gauge bias correction at the

monthly scale, and while the GPCC monitoring product

(version 2.0) and the NOAA Climate Prediction Cen-

ter’s ClimateAnomalyMonitoring System (CAMS) data

product were previously used in the TMPA version 6

algorithm, the version 7 algorithm uses a new full data

reanalysis (version 6.0) from GPCC that 1) interpolates

anomalies instead of amounts and 2) incorporates a

denser rain gauge network.

Over mountain regions, global and region-specific

improvements were implemented in the TPR estima-

tion, as detailed in a technical document (TRMM Pre-

cipitation Radar Team 2011) and summarized here. In

version 6, the algorithm was found to mistake the high

level of surface clutter over the mountains for rain echo.

It also mislocates surface echoes because of 1) inaccurate

elevation data and 2) concealment by strong signals

from heavy rainfall. The version 7 algorithm renews its

elevation map for the Andes and Himalayas using data

from the ShuttleRadar TopographyMission with 30-arc-s

spacing (SRTM30) and introduces a repeat search al-

gorithm for the surface echo that should improve its

detection and thus the determination of clutter-free rain

regions in the storm profile. This is expected to improve

the quantification of light rain. Global changes such as

the Z–R relationship based on a nonspherical rain drop

distribution, an increase of 0.5 dB to stratiform pre-

cipitation to compensate for heavy rain attenuation, and

allowance for small convective storm cells favor higher

estimations of heavy rainfall rates.

Few studies have looked into the performance of the

TMPA version 7 precipitation product. Kirstetter et al.

(2013), using data from TRMM 2A25 (TPR analysis)

show that in the contiguous United States, bias against

ground observations is reduced and correlation is im-

proved. The same product provides an increase in total

and convective rainfall over Asia south of 158S (Shiratsu

et al. 2011). In a benchmarking exercise against radar

observations in Japan, Nakagawa et al. (2011) saw no

change in correlation but saw improved bias. Mean-

while, Hobouchian et al. (2012) found increases in the

probability of detection and equitable threat score as

well as high extreme bias reduction from version 6 to

version 7 of TMPA in South American regions south of

208S. These findings are encouraging for tropical moun-

tain regions, where there is a growing body of modeling

work using TMPA, but often with some level of
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postprocessing required to improve the water balance

(e.g., Lavado-Casimiro et al. 2009; Arias-Hidalgo et al.

2013; Zulkafli et al. 2013). TMPA version 7 data will be

increasingly used inmodeling studies (e.g., Espinoza et al.

2013), necessitating a full exploration of the implica-

tions of the TMPA algorithm revisions on reducing data

uncertainty. Therefore, the objective of this paper is to

analyze if, how, and where TMPA version 7 is superior to

version 6 in the Peruvian Andes region from a hydrolog-

ical perspective. As the region covers some of the major

climates and gradients found in the tropics, the findings

will have a high potential for extrapolation tomany other

tropical regions relying on remote estimates of rainfall.

2. Methods and data

a. Study area

The study domain is located in north Peru and

southeast Ecuador between 118S and 18N and between

808 and 708W (Figs. 1a,b). The area covers humid trop-

ical rain forest, tropical mountains, and arid-to-humid

coastal plains.

The region’s climate has been discussed by various

authors (Espinoza Villar et al. 2009; Garreaud et al. 2009;

Casimiro et al. 2012; Buytaert et al. 2006; Kvist and

Nebel 2001). The climate and seasonality (see Fig. 1c) is

controlled by large-scale meteorological phenomena

such as the ITCZand theSouthAmericanmonsoon system

(SAMS;Marengoet al. 2012) that cause predominantlywet

austral summers [December–February (DJF)]. In the

austral winter [June–July (JJA)], the ITCZ band re-

mains north of 58N but continues to cause some deep

convection and rain in the northern parts of theAmazon

basin (Espinoza Villar et al. 2009). Additionally, the

Amazon regions experience large-scale stratiform pre-

cipitation throughout much of the year from exposure to

the humid tropical Atlantic easterly winds.

In the Pacific coast south of the Ecuador–Peruvian

border, the von Humboldt oceanic current causes

a cooler, drier climate regime throughout the year. The

humid Pacific coast areas in Ecuador are less subject to

this atmospheric cooling and experience a wetter sum-

mer because of the predominance of the ITCZ (Fig. 1c).

Over the Andes, the climate is complex and is primarily

controlled by orography, windward/leeward effects, and

the formation of local microclimates. The climate is

wetter in the east slopes (Amazon) than it is in the west

slopes because of the same climate drivers that affect the

lowland regions.

In our analysis, we subdivided the area into six climate

regions: Pacific coast, north and south; the Andes, west

and east slopes; Amazon sub-Andes; andAmazon lowland

FIG. 1. (a) Map of the study domain indicating the position of ground observation stations of various climate regions. The elevation of the

Andes is in gray shading. The river basins are delineated based on the river network and the positions of streamflow monitoring stations,

numbered corresponding to Table 2. (b) The map shows the geolocation of the study area. (c) The bar graph summarizes the precipitation

regimes in each climate region. The values plotted are the mean monthly climatology averaged over each region’s rain gauges.
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(summarized in Table 1). We define the Andes as the

regions above 1500m, and the Amazon sub-Andes as

the eastern Andean slopes located at altitudes of 13006
200m, which is a belt of high orographic precipitation

(above 3500mmyr21) illustrated in a previous study of

Andean transects by Bookhagen and Strecker (2008).

b. Precipitation data

TMPA version 6 and 7 for the time domain 1998–2009

were obtained from theNASA archive (ftp://disc2.nascom.

nasa.gov/ftp/data/s4pa//TRMM_L3/) and aggregated to

daily, monthly, seasonal, and annual values. Out of 1920

pixels (0.258 3 0.258) in the study domain, 144 are collo-

cated with the ground observation stations. The number

of collocated pairs are tabulated in Table 1.

Historical rain records (years 1998–2009) were ob-

tained from the national weather station networks of

Peru (Servicio Nacional de Meteorolog�ıa e Hidrolog�ıa)
and Ecuador (Instituto Nacional de Meteorolog�ıa e

Hidrolog�ıa). The records consist of daily time series

from 184 gauges in Peru and monthly time series from

79 gauges in Ecuador.

c. Precipitation analysis

The intercomparison was performed in terms of 1) the

mean annual rainfall (mmyr21), 2) the mean annual

relative bias [Eq. (1)], and 3) the mean seasonal bias

[mmday21; Eq. (2)] at each ground observation loca-

tion. For each region, we also averaged the time series of

all paired observations and inspected the bias at the

monthly scale:

REL.BIAS5

�
T

t51

PTMPA,t 2PGAUGE,t

�
T

t51

PGAUGE,t

3 100% (1)

and

BIAS5 �
T

t51

PTMPA,t 2PGAUGE,t . (2)

We further analyzed TMPA’s skill at estimating var-

ious precipitation event types by comparing their dis-

tributions of daily rainfall rates to those recorded by the

rain gauges. In presenting our results, we adopted the

following precipitation classification criteria (mmday21):

zero rain, 0–0.2; light rain, 0.2–1.0; moderate rain, 1.0–5.0,

heavy rain, 5.0–15, very heavy rain, 15–50, and extremely

heavy rain, above 50. We computed the probability of

occurrence of each precipitation type from the entire

time series for each satellite–gauge pair. For each region

and precipitation class, the statistics are summarized in

a boxplot to represent all data pairs, and the probability

distributions are compared between the rain gauge,

TMPA version 6, and TMPA version 7 datasets.

d. Hydrological analysis

To gauge the impact on hydrological performance, the

water balance was evaluated at multiple nested hydro-

logical basins tributary to the Amazon river by calcu-

lating the long-term average runoff ratio [RR; Eq. (3)]

using both versions of the precipitation product. The

corresponding evapotranspiration (ET) estimation is

also compared to values from the literature and poten-

tial evapotranspiration (PET) values from Moderate

Resolution Imaging Spectroradiometer (MODIS; values

from a representative year, 2001, were used):

RR5

�
T

t51

QRIVERGAUGE,t

�
T

t51

PTMPA,t

. (3)

Additionally, both TMPA versions were evaluated in

terms of the output of a hydrological model constructed

for the basins. Detailed model development has been

TABLE 1. The criteria used to define various regions for the analysis. The variable n is the number of satellite–gauge observation pairs

located in each region. Climate regimes are given in terms of seasons DJF, March–May (MAM), JJA, and September–November (SON).

No. Subregion

Elevation

(m) Climate driver Climate regime n

1 Pacific coast, north 0–1500 ITCZ Humid DJF and MAM;

dry JJA and SON

19

2 Pacific coast, south 0–1500 von Humboldt current, ITCZ Humid DJF and MAM;

dry JJA and SON

20

3 Andes west slope .1500 Mountain terrain, ITCZ Humid DJF and MAM;

dry JJA and SON

85

4 Andes east slope .1500 Mountain terrain, ITCZ, orography Weak seasonality, drier JJA 61

5 Amazon sub-Andes 1100–1500 Orography, ITCZ, SAMS, tropical

Atlantic winds

Weak seasonality, drier JJA 8

6 Amazon lowland 0–1200 ITCZ, SAMS, tropical Atlantic winds Weak seasonality, drier JJA 70
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described in previous work (Zulkafli et al. 2013). Briefly,

we used a land surface model called the Joint UK Land

Environment Simulator (JULES; Best et al. 2011) to

generate hydrological fluxes over 0.1258 3 0.1258 grids.
JULES requires near-surface meteorological data as

input, which it uses to solve fully coupled energy, water,

and carbon balance equations, producing a continuous

output of ET and runoff (surface and subsurface). This

runoff is then fed into a delay function routing model to

produce streamflows that are compared to observations.

Daily streamflow data were provided by the Geo-

dynamical, hydrological and biogeochemical control of

erosion/alteration and material transport in the Amazon

basin (HYBAM) project from nine stations in Ecuador

and Peru (Table 2). Information from global and local

maps is used to describe the land surface properties, and

the simulations (1998–2008) were performed with few

perturbations to the original model parameters. The

performance scores such as Nash–Sutcliffe efficiency

(NSE) and the relative bias between the simulated

runoff and the observed daily streamflows were tabu-

lated and compared between the TMPA versions.

3. Results and discussion

a. Mean annual, seasonal, and monthly bias

Figures 2a–c show themean and the relative change of

the mean annual precipitation in TMPA versions 6 and

7. A clear spatial trend is observed—there is a sub-

stantial increase in the total precipitation amounts from

version 6 to version 7 along the Andes and the Pacific

coast in the north that results in corresponding re-

ductions in the negative bias against rain gauge obser-

vations (Figs. 2d,e). Figure 2f shows that, with the

exception of a few gauge locations in the Pacific coast in

Peru, the direction of change in the relative bias is pos-

itive. This observation agrees with an increase in gauge

densities in these areas between the different datasets

used in versions 6 and 7 and suggests a large role in the

bias correction within the algorithm. In spite of this,

TMPA version 7 continues to overall underestimate pre-

cipitation, except in the northern Andean regions down

to the Ecuador–Peruvian border, where it is now over-

estimating compared to the rain gauges.

A seasonal analysis demonstrated the main reduction

of the negative bias from version 6 to version 7 occurring

along the Andean range and in the coastal region in

Ecuador during the wet season (DJF and MAM) (Fig. 3).

TMPAversion 7 also tends to cause some overestimations

over the Andes (west and east slopes) in the north, and

these overestimations persist during the drier seasons

(JJA and SON). Changes between versions 6 and 7 over

the lowland Amazon and the Amazon sub-Andes re-

gions are relatively small with no apparent seasonal

trend, which may be explained by the low seasonality in

their climate. Altogether, there is evidence of an increase

in wet season deep convective heavy precipitation amounts

and an increase (to the point of overestimation) of the

dry season light rain, and this is further confirmed in the

time series analysis of the monthly bias between TMPA

and gauge estimates.

Figure 4 shows that TMPA versions 6 and 7 monthly

biases against gauge data are highly correlated and that

the direction of change is positive throughout most of

the time series. As the biases in version 6 tend to be neg-

ative, this resulted in biases shifting toward zero in ver-

sion 7, and in some cases, such as the Pacific lowland in

the south, toward positive biases. A strong seasonality in

the negative bias reduction (highest in DJF) is observed

in the coastal regions (north and south) and the west

TABLE 2. Streamflow stations and water balance summary. The numbers refer to Fig. 1. The mean observed dischargeQobs (m
3 s21) is

calculated using all available data. Runoff ratio is given for version 6 (RR V6) and 7 (RR V7) and the corresponding evapotranspiration

(mmyr21) is calculated from the water balance equation assuming zero long-term change in storage for version 6 (ETV6) and 7 (ETV7).

No. Station

River

basin Coordinates

Elev

(m)

Drainage

area

(km2) Availability Qobs

Normalized

Qobs

(m yr 22)

RR ET PET

MODIS

(mmyr21)V6 V7 V6 V7

1 Nueva Loja Aguarico 0.08N, 76.88W 299 4640 2001–11 593 4.03 2.56 1.89 ,0 242 1100

2 San

Sebastian

Coca 0.38S, 77.08W 290 5329 2000–11 459 2.72 1.86 1.14 ,0 1246 1173

3 Francisco de

Orellana

Coca 0.58S, 77.08W 260 12 297 2001–10 1124 2.88 1.61 0.93 179 2167 1348

4 Nuevo

Rocafuerte

Napo 0.98S, 75.48W 189 27 534 2001–11 2176 2.49 1.32 0.83 566 2170 1488

5 Paute Paute 2.68S, 78.68W 1840 4917 1999–2004 109 0.70 1.30 0.60 ,0 567 1590

6 Santiago Santiago 3.18S, 78.08W 290 23 806 2001–11 1585 2.10 2.39 1.37 ,0 163 1261

7 San Regis Mara~n�on 4.58S, 73.98W 93 363 848 1986–2011 16 601 1.44 0.94 0.68 592 1438 1788

8 Borja Mara~n�on 4.58S, 77.58W 200 114 991 1986–2011 4539 1.25 1.43 0.90 ,0 489 1536

9 Chazuta Huallaga 6.68S, 76.18W 180 69 175 1998–2009 3042 1.39 1.18 0.82 ,0 875 1737

APRIL 2014 ZULKAFL I ET AL . 585



Andes, which are the regions with the strongest sea-

sonalities. A few exceptions are the prominent positive

biases with version 7 in the sub-Andes between 2002 and

2006, and in the Pacific lowlands in the south, during the

same time period and in 2007. These are drier summer

periods associated with El Ni~no episodes of drought, as

these regions experience increased dry air subsidence

from intensified convection over the Pacific Ocean.

b. Precipitation rates distribution

Figures 5a–e provide further insight into the shifts in

the daily rainfall distributions estimated in versions 6

and 7. In version 6, the TMPA distributions are more

strongly skewed toward light-to-moderate intensity pre-

cipitation compared to the gauge distributions across all

regions. This observation concurs with the reported un-

derestimation of extreme high precipitation by TMPA

version 6 in the literature. The version 7 product effectively

shows a shift in the distribution toward higher-intensity

precipitation and an increase in the internal variability

across the range of precipitation rates. Consequently, there

is a reduction in the bias between TMPA and rain gauge

distributions over the Andes and sub-Andes, particu-

larly for heavy and very heavy precipitation, where the

medians of the distributions align closer than previously.

The underestimation, nevertheless, persists to some ex-

tent, and light-to-moderate rain continues to be over-

estimated most severely in the west slopes of the Andes.

We recognize that TMPA’s underestimation of high

extremes may simply be a reflection of the nature of

their data as a spatial average when compared to point

rain gauge data. However, TMPA also shows an over-

estimation of zero-rain days, whereas, by their nature,

spatial averages should observe lower no-rain days

compared to point estimates. This may be caused by the

low sampling frequency and consequently missed short-

duration precipitation events between satellite mea-

surements. The overestimation of dry days is considerably

FIG. 2. The spatial variability of the (a),(b) mean annual precipitation; (d),(e) mean relative bias against ground observation; and (c),(f)

changes betweenTMPAversions 6 and 7. Country borders are outlined in gray. River basins are outlined in black in (a)–(c). The elevation

of the Andes is in gray shading in (d)–(f).
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reduced in version 7 and may have to do with the re-

finement to the surface reflectivities routine in the TPR

algorithm that improves the determination of rain sig-

nals from clutter, and as well as the recalibration of the

TPR’sZ–R relationship toward a general increase in the

precipitation rates.

c. Impact on the water balance and hydrological
simulation

The impact of the TMPA algorithm change to the

water balance in several hydrological basins tributary to

the Amazon basin (Fig. 2) are presented in terms of

runoff ratios (Table 2). TMPA version 6 typically gen-

erates physically unrealistic runoff ratios above 1,

highlighting the consistent regional underestimation of

precipitation. Version 7 generates substantially reduced

runoff ratios, with values closer to those expected for

humid tropical basins, even in the small Andean basin of

Paute. Some unrealistically high runoff ratios remain in

basins with a high areal runoff, such as Santiago, San

Sebastian, and Nueva Loja located in southeastern

Ecuador, which reflect the prevailing underestimation of

heavy rain in version 7 TMPA, as discussed in section 3b.

The increase in precipitation amounts also results in ET

estimates closer toMODIS-based estimates averaged for

each basin (Table 2, last column) and literature values of

ET (600, 1200, and 1300mmyr21 median values for the

Andes and tropical montane and lowland rain forests, re-

spectively; see Zulkafli et al. 2013, and references therein).

The improvement in the water balance translates di-

rectly into hydrological modeling performance, as seen

in Fig. 6 and Table 3. Simulations driven by TMPA

version 7 produce a closer estimate of daily streamflows

to the observed time series and result in an increase in

the modeling efficiency (NSE score) in all nine basins.

At San Regis, which is the largest basin analyzed, the

relative bias between simulated and observed flows de-

creased from237.8% to22.0%, which is a reduction of

95%. Here, the averaged precipitation bias reduction

from 235% to 210% parallels the reduction in the

simulated discharge. In Chazuta, where there is a good

coverage of rain gauges across the basin, we performed

FIG. 3. The spatial variability of the seasonal biases (mmday21) between TMPA versions 6 and 7 and ground observations. The elevation

of the Andes is in gray shading.
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an additional simulation using rain gauge data interpolated

with kriging to serve as a benchmark and found it to

underperform (NSE of 20.19, bias of 230.0%) the

simulation forced by TMPA version 7 (NSE of 0.43, bias

of218.7%). This implies a high potential skill of TMPA

version 7 in ungauged catchments, a sentiment echoed

by Xue et al. (2013) based on their hydrological evalu-

ation of TMPA version 7 against version 6 and ground

observations in Bhutan.

Improvements at varying degrees were observed

elsewhere, most notably in the humid north Andean

basins of Paute, Nuevo Rocafuerte, and Francesco de

Orellana, which suggests the role of an improved high

precipitation estimation. Nevertheless, the hydrographs

also show that the variations in the peaks are still poorly

modeled, except in the larger basins. This reflects the

continued underestimation of extremes by TMPA, as

well as the limitations of the hydrological model in

representing surface runoff generation processes in

mountain environments. In spite of this, our work has

demonstrated that the forcing uncertainty is significantly

reduced in TMPA version 7. This enables further work

FIG. 4. The average monthly bias in TMPA versions 6 and 7 vs gauge by climate region.
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to focus on developing more accurate process repre-

sentations for the tropical Andes.

4. Conclusions

The TMPA versions 6 and 7 intercomparison work

completed over six climate regions in the tropical

Andes–Amazon showed an overall increase in pre-

cipitation, especially in the Pacific lowlands (north) and

the Andes. Our results corroborate the findings of the

few existing validation studies on TMPA version 7 that

show better agreement with gauge data compared to

version 6. Our closer inspection of the bias distributions

indicated that the primary improvement is in the re-

duction of the negative bias of the wet season’s high

extreme. We could infer that the positive outcome is

attributable to a combination of the changes in the al-

gorithm that improves heavier rain quantification, and

we hypothesize that 1) a higher number of rain gauges

used during bias correction, 2) the TPR radar recali-

bration toward higher precipitation rates, and 3) an

improved GPROF 2010 algorithm for the PMW-based

precipitation estimates play a large role. The hydrolog-

ical performance of TMPA with version 7 increased

considerably over nine hydrological basins in the region,

increasing our confidence in the use of TMPA as forcing

data for modeling applications to complement ground

observations in tropical mountain regions where they

are usually scarce or inaccessible. This applies not only

to hydrological studies but also to other modeling ap-

plications that benefit from the use of precipitation as

driving data.

We recognize several pathways for further evaluation.

First, by analyzing a composite, final product, we restrict

our ability to directly attribute the improvements to

TMPA version 7 to the different steps of the TMPA al-

gorithm. The logical next step is therefore to evaluate

multiple precipitation products from the various levels of

the TMPA processing individually, which will enable us

to identify and inform the main contributors to the

overall uncertainty. For example, one could compare the

TMPA’s research product to the real-time product and

quantify the added value of a regional gauge correction of

the satellite product. Second, from a water resources

standpoint where the main interest is in the means and

extremes, it is sensible to look at TMPA’s representation

of entire distributions of precipitation rates compared to

those of gauge data, as we have presented in our analysis.

However, for operational applications such as forecasting,

early warning, or risk analysis, further performance in-

dices, such as false alarm ratios, missed volumes, and the

probability of detection, should be considered. In this

context, a direct pixel-to-point satellite–gauge comparison

will have to accommodate the fundamental challenge of

FIG. 5. (a)–(e) Precipitation rate distributions in TMPAversion 6 vs 7, gauge, and TMPA vs gauge, according to precipitation types. The

precipitation type is characterized based on precipitation intensities (mmday21): zero rain, 0–0.2; light rain, 0.2–1.0; moderate rain, 1.0–

5.0; heavy rain, 5.0–15; very heavy rain, 15–50; and extremely heavy rain, above 50. The boxplots in each interval represent the variability

between the data points, which are probability of occurrence for each pixel-to-point pair. The boxes extend from the first to the third

quartiles of the data points, and the whiskers extend to the highest value within 1.5 times the interquartile range. The dots represent values

outside this range.
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resolving the mismatch in the temporal and spatial

support of the data products in both occurrence and

amounts, that is, the timing of the precipitation event

versus that of a satellite retrieval and the spatial in-

tegration of satellite estimates that smooths extremes.

Aggregating point rain gauge data to the satellite pixel

using a simple averaging or more complex geostatistical

interpolation methods, or conversely, downscaling sat-

ellite data to finer-resolution estimates using geo-

physical predictors such as elevation [as has been shown

in Fang et al. (2013)], should be implemented before

a reasonable point-to-pixel comparison can be made.

Finally, conclusions from our analysis of a set of data

from a specific region and the potential for extrapolation

should ideally be further corroborated using cross vali-

dation with rain gauge data from other regions. This

extended analysis can also explore the data performance

at different spatial and temporal scales.

Acknowledgments. This research is funded by theU.K.

NERC Grant NE/I004017/1 and the Ministry of Higher

Education, Malaysia. We thank Jhan-Carlo Espinoza

Villar and two anonymous reviewers for constructive

comments.
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