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ABSTRACT

This study compares two nonparametric rainfall data merging methods—the mean bias correction and

double-kernel smoothing—with two geostatistical methods—kriging with external drift and Bayesian

combination—for optimizing the hydrometeorological performance of a satellite-based precipitation product

over a mesoscale tropical Andean watershed in Peru. The analysis is conducted using 11 years of daily time

series from the Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA)

research product (also TRMM 3B42) and 173 rain gauges from the national weather station network. The

results are assessed using 1) a cross-validation procedure and 2) a catchment water balance analysis and hy-

drological modeling. It is found that the double-kernel smoothing method delivered the most consistent im-

provement over the original satellite product in both the cross-validation and hydrological evaluation. Themean

bias correction also improved hydrological performance scores, particularly at the subbasin scale where the rain

gauge density is higher. Given the spatial heterogeneity of the climate, the size of the modeled catchment, and

the sparsity of data, it is concluded that nonparametric merging methods can perform as well as or better than

more complex geostatistical methods, whose assumptions may not hold under the studied conditions. Based on

these results, a systematic approach to the selection of a satellite–rain gauge datamerging technique is proposed

that is based on data characteristics. Finally, the underperformance of an ordinary kriging interpolation of the

rain gauge data, compared to TMPA and other merged products, supports the use of satellite-based products

over gridded rain gauge products that utilize sparse data for hydrological modeling at large scales.

1. Introduction

Hydrological studies rely on the quality of rainfall

estimates to produce meaningful modeling output. Rain

gauges can deliver accurate point measurements, but

their poor ability to describe the spatial structure of

rainfall can be a major limitation when precipitation

fields are required, for example, in distributed hydro-

logical modeling applications. This problem is more

severe in tropical regions because of high rainfall vari-

ability and scarce data conditions.

Satellite-based estimates such as the Tropical Rainfall

Measuring Mission (TRMM) Multisatellite Precipitation

Analysis (TMPA; also TRMM 3B42) product are becom-

ing increasingly attractive as an alternative source of forc-

ing data in data-sparse regions, although their application
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can be limited by quantitative inaccuracies (Zulkafli et al.

2014a;Anagnostou et al. 2010; Tian et al. 2007). Information

from a large number of rain gauges is already assimilated as

part of global/regional satellite algorithms; nevertheless, the

rain gauge databases sourced by these procedures can ex-

clude more extensive national networks where data acces-

sibility is restrictive, as often is the case in developing

countries. In these regions, the global precipitation product

may be found to be unsatisfactory and requiring local ad-

justment (e.g., Lavado-Casimiro et al. 2009).

Satellite algorithms are known to internally perform

gauge correction, for example, using a mean-field bias

correction (MBC) and/or inverse-error-weighted aver-

aging methods (Huffman et al. 1997; Grimes et al. 1999).

Postanalysis merging methods have also been used on

the products of these algorithms, for example, the spatial

adjustment of TMPA using interpolations by inverse

distance weighting (Lavado-Casimiro et al. 2009),

double-kernel smoothing (DS; Li and Shao 2010), and

the nearest neighbor method (Vila et al. 2009); correc-

tion through regression analysis between the satellite-

and rain gauge–based precipitation at various temporal

scales, for example, climatologies in Almazroui (2011)

and monthly in Yin et al. (2008); and correction using

probability distributions (Anagnostou et al. 1999). Geo-

statistical methods have also been used such as the

kriging with external drift (KED) to combine gauge and

10-day (dekad) IR-based precipitation data from Me-

teosat (Grimes et al. 1999) and the cokriging approach

to interpolate daily rain gauge data with the GPCP

multisatellite precipitation estimates as covariates

(Kottek and Rubel 2008). More recently, Heidinger

et al. (2012) performed a wavelet analysis on the signals

from daily rain gauge and TMPA time series and

reconstructed a combined product by overlaying short-

term noise from the gauge signal on the long-term trends

in the TMPA signal.

The methods applied to satellite data have origins in

the radar research community, for example, MBC [ref-

erences in Gjertsen et al. (2004)], spatial adjustment

(Moore et al. 1989;Wood et al. 2000), KED (Haberlandt

2007; Erdin 2009; Schiemann et al. 2011; Goudenhoofdt

and Delobbe 2009), and cokriging (Krajewski 1987). A

particularly promising technique that has not been

largely applied to satellite-based rainfall estimation is

the Bayesian combination (BC) method proposed by

Todini (2001). This method quantifies the estimation

uncertainties of precipitation data measured by differ-

ent sensors (e.g., satellite, radar, and ground rain

gauges), then combines these data such that the overall

estimation uncertainty formulated in terms of estima-

tion error covariances is minimized. Promising results

from this method have been obtained from both

numerical examples (Mazzetti and Todini 2004) and

case studies in a small-scale densely gauged urban

catchment (Wang et al. 2013).

Despite thewealth ofmerging algorithms at our disposal,

there is not a clear guideline as to which method would be

optimal given the data characteristics (density, spatial bias,

temporal resolution, etc.). In this study, we compare two

nonparametric rainfall data merging methods—MBC and

DS—with two geostatistical methods—KED and BC (un-

tested for satellite applications)—over a mesoscale

tropical Andean catchment in Peru. The analysis is

conducted using 11 years of available data from the

TMPA, version 7, research product and 173 rain gauges in

the national weather station network of Peru. The results

are assessed through a cross-validation procedure and

supplemented by a hydrological evaluation using the

catchment water balance and a hydrological model. The

aim is to highlight the strengths andweaknesses of each of

the methods and provide some guidelines for a pre-

liminary selection of methods in the context of data-

sparse hydrological applications.

2. Data and methods

a. Study area

This study focuses on a mesoscale river basin that

spans the Peruvian Andes and the Amazon floodplains

(Fig. 1). The Peruvian Amazon (locally Marañón) River

basin extends from latitude 18 to 118S and from longi-

tude 808 to 748W, covering about 360 000km2. The alti-

tude of the basin ranges from well above 4000mMSL in

the western boundary in the Andes to the Amazonian

floodplains to the east.

The downstream limit of the hydrological basin is

defined by the gauging station at San Regis (4.48S,
748W). Upstream, the river is gauged at three other

stations: Borja, Santiago, and Chazuta. Farther down-

stream, the Marañón River merges with the Ucayali

River to form the Amazon River just before reaching

the city of Iquitos. The basin covers the Pacaya–Samiria

National Reserve, which is the largest floodable forest

reserve in Peru and is an area of high ecological

significance.

A complex climatic pattern is present in the region

because of the interaction between various synoptic

meteorological processes and the orographic effect of

the Andes. In general, rainfall is particularly high in

regions close to the equator (more than 2000mmyr21)

because of the passage of the intertropical conver-

gence zone (ITCZ) and decreases toward the tropics

(Espinoza Villar et al. 2009). Additionally, humid At-

lantic trade winds flow east–west across the vast rain

forest and form an intense orographic belt along the
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eastern Andes as they encounter the first slopes

(Espinoza Villar et al. 2009; Garreaud et al. 2009;

Bookhagen and Strecker 2008). They also deviate south-

ward, transporting moist air toward the subtropics. In the

highlands, the Andean landscape causes shielding and

moisture intensification resulting in various microclimates

(Buytaert et al. 2006a; Rollenbeck and Bendix 2011).

b. Precipitation data

The satellite-based product is obtained from the

TMPA product, in its latest available version 7, released

in November 2012. The TMPA product combines ob-

servations from multiple satellites, including TRMM

and other geostationary satellites (Huffman and Bolvin

2013). The performance of this dataset in this study area

has been previously assessed by Zulkafli et al. (2014a).

Precipitation estimates from 1998 to 2008 were obtained

with a 3-h temporal resolution and 0.258 3 0.258 (ap-
proximately 27.8 km 3 27.8 km) spatial resolution.

Values were subsequently aggregated to the daily scale

in order to match the temporal resolution of the rain

gauge records.

The rain gauge dataset is the historical rainfall time

series obtained from the PeruvianNationalMeteorological

and Hydrological Service [Servicio Nacional de

Meteorología e Hidrología del Perú (SENAMHI)]. This

includes daily rainfall amounts in millimeters for 11

years between January 1998 and December 2008 from

173 recording stations located within the satellite do-

main. Their locations are shown in Fig. 1. The area

covered by the rain gauges is about 1 100 000km2, which

translates to an average network density of less than one

rain gauge per 5000km2. The gauges are particularly

clustered around towns and along rivers, providing

higher densities in regions of easier access. The high-

lands are also better represented compared to the low-

lands, as the average rain gauge altitude of 1560mMSL

indicates (Table 1).

c. Merging methods

The methods compared are 1) MBC, 2) DS, 3) ordi-

nary kriging (OK; rain gauge interpolation only), 4)

KED, and 5) BC.

1) MEAN BIAS CORRECTION

This method corrects the satellite-based product by

the total multiplicative bias between the rain gauge

estimates and the collocated satellite values, thus

FIG. 1. TheMarañón basin and three subbasins. The map includes the regional topography, the

main river network, the discharge stations, and the rain gauges.
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assuming a uniform bias over the spatial domain. For

each daily event (i.e., each time step), a correction factor

B is thus calculated using the following equation:

B5

�
N

j51

ZG(xj)

�
N

j51

ZS(xj)

, (1)

where N is the number of available gauges inside the

satellite domain, and ZG(xj) and ZS(xj) are the gauge

and satellite daily rainfall values corresponding to

gauged location j.

2) DOUBLE-KERNEL SMOOTHING

The nonparametric double-kernel smoothing is a tech-

nique developed by Li and Shao (2010) specifically for

data-sparse applications. The main idea of this method is

the interpolation of the point residuals «S using the kernel

density function and the adjustment of the satellite field by

the estimated residual field. The point residual at the given

gauged location j 5 1, . . . , N is defined to be

«S
j

5 «S(xj)5ZS(xj)2ZG(xj) . (2)

A first-level interpolation is performed to generate a

full set of residuals (pseudoresiduals) «SS on the same

grid as the satellite data. At the given gridpoint location

i 5 1, . . . , M, the pseudoresidual is defined to be:

«SS
i
5

�
N

j51

L(kHi2Hjk/b)«S
j

�
N

j51

L(kHi 2Hjk/b)
, (3)

where k�k is the Euclidean norm and L is the Kernel

function defined as a Gaussian kernel following Li and

Shao (2010):

L(kHi 2Hjk/b)5
1ffiffiffiffiffiffi
2p

p exp

�
2
1

2
(kHi 2Hjk/b)2

�
. (4)

The variable H is the position of the points, and the

bandwidth b is determined using Silverman’s rule of

thumb (Silverman 1998):

b5

�
4s5

3n

�1/5

, (5)

where n is the number of samples and s is the standard

deviation of samples. A second-level interpolation is

applied on both the residuals and pseudoresiduals to

estimate the final error field «DS:

«DS
k

5

�
N

j51

L(kHk2Hjk/b1)«S
j
1 �

M

i51

L(kHk2Hik/b2)«SS
i

�
N

j51

L(kHk2Hjk/b1)1 �
M

i51

L(kHk2Hik/b2)
,

(6)

and the merged product ZDS at point k is calculated by

subtracting to the satellite estimate ZSk the corre-

sponding error «DSk :

ZDS
k
5ZS

k
2 «DS

k
. (7)

The kernel smoothing (interpolation) of the residuals

does not rely on the stationary assumption, as is the case

for geostatistical methods. The formulation is such that

the product of themerging will converge toward the rain

gauge estimates with decreased distance toward the

ground observations.

3) ORDINARY KRIGING

Among kriging estimation methods, the ordinary

kriging provides the best unbiased linear estimates of

point values or block averages (where ‘‘best’’ means

minimum variance). The basic assumption of the OK is

that data values can be characterized using a stationary

random variable with an unknown mean (Müller 2007).
Here, the OK is used to produce the rainfall estimates at

each satellite grid location through the interpolation of

discrete (point or grid averaged) rain gauge measure-

ments. These spatially interpolated rain gauge esti-

mates, along with the original satellite product, then

serve as the baseline for comparison with the merged

products.

Ordinary kriging uses the (semi) variogram to char-

acterize the spatial association of data values at different

locations. The definition of the (isotropic) semivario-

gram is given as follows:

TABLE 1. Key characteristics of the rain gauge dataset. Values are indicative of the available period (1998–2008).

No. of stations Mean altitude (m MSL) Mean annual rainfall (mm) Max intensity (mmday21) Missing values (%)

173 1560 1350 216.8* 8.3

* Recorded on 9 Apr 2008 at the station of Francisco Orellana (3.48S, 72.88W).
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g(h)5
1

2
var[Z(x1 h)2Z(x)] , (8)

where g is the semivariance of the random variable Z

between two points with distance h. Note that g does not

depend on the position x, but it is only a function of

distance h, thus assuming stationarity of the variance of

the differences separated by the same distance. In this

case, we also assume the isotropy of the model, since g is

not function of the direction. The variogram can be

empirically estimated from available observations by

computing the semivariance g for several classes of

distances between gauges. This is known as experi-

mental or empirical variogram.

Once the experimental variogram is estimated, it is

possible to fit a theoretical variogram model to it. In

the literature there are a variety of different models:

see de Marsily (1986) for a complete list. In this

study, the exponential model was found to produce

the best fit:

g(h)5v[12 exp(2h/a)] , (9)

where a denotes the range, the distance after which

the variogram reaches its asymptotic value, the sill v,

so that the correlation between farther apart gauges

is approximately equal to zero. A nugget effect can

be added to Eq. (9) to represent any residual vari-

ance not explained by distance at an infinitesimally

small separation, due to measurement and epistemic

errors.

The unknown precipitation value Z* at location x0 is

estimated as a linear combination of the precipitation

values ZG(xj) at known points xj, weighted by the sem-

ivariogram function l(h):

Z*(x0)5 �
N

j51

ljZG(xj) . (10)

The only additional constraint is that the weights have to

add up to unity:

�
N

j51

lj 5 1. (11)

This condition is necessary to guarantee an unbiased

estimator (deMarsily 1986). Equation (10), subjected to

Eq. (11), is solved by minimizing the variance of the

estimation errors var(ZG
* 2ZG), which are assumed to

have a Gaussian distribution. The resulting OK equa-

tion is thus the following:

�
N

j51

ljg(xi, xj)1m5 g(xi, x0) , (12)

where m is the Lagrange multiplier used to fulfill the

unbiased condition [Eq. (11)]. Equation (12) can be re-

written in the matrix form A3 x5 b, so that the un-

known x represents the set of weights in Eq. (10),A is the

semivariogram matrix with a term for each pairs of

gauges, and b is the semivariogram vector between all

gauges and the prediction point x0:

0
BBBBBB@

0 g12 g13 ⋯ g1N 1

g21 0 g23 ⋯ g2N 1

..

. ..
. ..

.
⋱ ..

. ..
.

gN1 gN2 gN3 ⋯ 0 1

1 1 1 ⋯ 1 0

1
CCCCCCA

3

0
BBBBBBB@

l10
l20

..

.

lN0
m

1
CCCCCCCA

5

0
BBBBBB@

g10
g20

..

.

gN0

1

1
CCCCCCA
,

(13)

where gij denotes g(xi, xj), the semivariogram value

between two known points i and j.

The way the equation is set up is such that the solution

may include negative weights, which can distort the final

estimated values. Hence, an a posteriori correction to

the weights is performed according to the algorithm

proposed by Deutsch (1996).

4) KRIGING WITH EXTERNAL DRIFT

KED is an extension of the OK whereby non-

stationarity is assumed and represented by the drift

term, which in our case is the satellite-based estimates.

The method implemented is as described in Hewitt

(2012). KED requires the satellite value at the pre-

diction location x0 to be equal to theweighted average of

the satellite values ZS at gauged locations xj:

�
N

j51

ljZS(xj)5ZS(x0) . (14)

This additional condition is included in the error min-

imization equation [Eq. (12)] to produce the following:

�
N

j51

ljg(xi, xj)1ma1mbZS(xi)5 g(xi, x0) . (15)

In matrix format, this equation is
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0
BBBBBBBB@

0 g12 g13 ⋯ g1N 1 ZS,1
g21 0 g23 ⋯ g2N 1 ZS,2

..

. ..
. ..

.
⋱ ..

. ..
. ..

.

gN1 gN2 gN3 ⋯ 0 1 ZS,N
1 1 1 ⋯ 1 0 0

ZS,1 ZS,2 ZS,3 ⋯ ZS,N 0 0

1
CCCCCCCCA

3

0
BBBBBBB@

l10
l20
..
.

lN0
ma
mb

1
CCCCCCCA

5

0
BBBBBBB@

g10
g20
..
.

gN0
1

ZS,0

1
CCCCCCCA
, (16)

where ZS,i denotes ZS(xi), the satellite-based estimation

at location i. For the interpolation, ZS(xi) and ZS(xj) are

used solely for their covariance for weighting values of

ZG(xi); the actual values of ZS(xi) do not feed into the

final estimates.

5) BAYESIAN COMBINATION

The theory underpinning the Bayesian combination

method is described in Todini (2001) and PROGEA Srl

(2009) and summarized here. This method first uses the

block kriging method to generate interpolated rain

gauge rainfall estimates at each satellite grid location

and to estimate the associated estimation error co-

variance (i.e., estimation uncertainty).

After kriging interpolation, the Kalman filter

(Kalman 1960) is then employed to merge these esti-

mates with the coincidental satellite rainfall product by

comparing the uncertainty of these two data sources.

Here the merged product becomes the a posteriori es-

timate y00, which is defined as

y005ZS 1K(ZG 2ZS 2m«) , (17)

wherem« is themean of the satellite–rain gauge bias [i.e.,

E(ZG 2 ZS)] and K is the Kalman gain. The Kalman

gain represents the relative measure of uncertainty and

is defined as follows:

K5V«
S
(V«

S
1V«

G
)21 . (18)

The uncertainty associated with the satellite estimates

V«S is represented by the covariance matrix of the sat-

ellite error field (i.e., «5ZG 2ZS), while the un-

certainty associated with the rain gauge rainfall

estimates V«G is the error variance produced in the

kriging interpolation. The variable K increases (de-

creases) as V«S is larger (smaller) compared to V«G , and

consequently, the filter will weigh more in favor of the

rain gauge (satellite) estimates in the combination.

The Bayesian combination method was initially

implemented using the commercial software RAIN-

MUSIC (PROGEA Srl 2009). As the software is not

open source, the default settings of the method cannot

be changed, for example, the theoretical variogram

model for the kriging interpolation has to be Gaussian.

A MATLAB script was thus implemented to execute

the Bayesian combination with several changes:

1) Instead of the Gaussian variogram model, the expo-

nential variogram model was found to provide a

better fit to the experimental variogram for the

kriging interpolation.

2) Instead of using the block kriging method, the OK

method was used to interpolate grid-averaged rain

gauge data. The main difference between the ordi-

nary and block kriging methods lies in the way

variograms are calculated from data. The former

calculates the variance between two points, while the

latter calculates the variance between point and

block (which is the average of the point-to-point

variances).

To distinguish the two different implementations, the

RAINMUSIC Bayesian combination will be sub-

scripted as BCR, whereas the replicate (MATLAB)

model is annotated as BC.

d. Meteorological evaluation

Since we do not know the true rainfall value at a given

grid point, we employed collocated rain gauge obser-

vations as a first approximation in order to assess the

accuracy of the various merged precipitation products.

The reader should nonetheless be aware of the scale

mismatch that exists between rain gauge point mea-

surements and 0.258 satellite cells (approximately

773 km2 in TMPA). However, in our context of a com-

parative evaluation, the pixel-to-point evaluation is

implemented in the same fashion across all four merging

methods and therefore is not expected to affect the

relative performance.

The collocation of a rain gauge to a satellite grid cell

was performed using nearest neighbor approximation,

such that rain gauges are associated to the centers of the

nearest grid cells. If multiple gauges are present over the

same cell, their estimates are averaged to produce a

presumably more representative value.

The satellite–gauge data merging was tested in a 10-

fold cross-validation scheme. The cross validation was

performed at the daily time step for 141 days of rain,
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duringwhichmore than 75%of the rain gauges recorded

a rain event.

The goodness-of-fit between the merged products and

the corresponding pixel-average rain gauge values was

evaluated in terms of the mean absolute error MAE,

mean error ME, root-mean-square error RMSE, Nash–

Sutcliffe efficiency NSE, and percent bias (relative bias

in percent).

An analysis of error components such as false alarms

and missed events is not included. This would require a

detailed discussion of each of the merging techniques on

those performance indices, which is beyond the scope of

this study. From a hydrological modeling perspective,

this should not represent an issue given the large scale of

the studied basins. Both false alarms and missed events

are typically dominated by low-intensity or very local-

ized events (covering part of the pixel but missed by the

rain gauge or vice versa) which have only a limited

contribution to streamflow. If they indeed have a hy-

drological impact (e.g., on the water balance and flow

magnitude), then this should be captured in the perfor-

mance metrics included in the analysis. However, for

smaller-scale applications, such error components might

have an impact. The reader is referred toMaggioni et al.

(2013) for a related analysis.

e. Hydrological evaluation

A first-level hydrological assessment of the data

quality was conducted using the catchment water bal-

ance with the runoff ratio RR defined as the ratio of the

precipitation that contributes to runoff:

RR5
R

P
. (19)

The RR values calculated using the different outputs

from the merging were compared to known values from

the literature (Campling et al. 2002; Buytaert et al.

2006b; Rollenbeck and Anhuf 2007).

The merged precipitation products were subsequently

used to drive a hydrological model. The Joint UK Land

Environment Simulator (JULES; Best et al. 2011),

which is a physics-based community model derived from

the Met Office land surface scheme, was parameterized

over 2040 grid boxes of 0.1258 3 0.1258 (approximately

14 km 3 14km) in the catchment using best-available

land cover and soil data to generate runoff. The runoff

was then routed offline along the river network using a

delay function to simulate streamflows at various points

in the river basin. The river network was developed

using hydrographic data (90-m resolution) from the

Hydrological Data and Maps Based on Shuttle Eleva-

tion Derivatives at Multiple Scales (HydroSHEDS;

Lehner et al. 2008).Model optimization was only used to

obtain the routing parameters (flood wave celerities);

any inconsistent model compensation of the pre-

cipitation errors across the merging products is not ex-

pected. For further description of the model, the reader

is referred to Zulkafli et al. (2013).

The impact of merged precipitation forcing data on

streamflow simulations is assessed by comparison with

observed daily discharges. The evaluation is done at four

streamflow gauging stations, identified in Fig. 1, over an

11-yr period (1998–2008). Streamflow data were obtained

through Geodynamical, Hydrological, and Biogeochemi-

cal Control of Erosion/Alteration and Material Transport

in the Amazon Basin (HYBAM) from SENAMHI and

the Instituto Nacional de Meteorología e Hidrología,
Ecuador (INAMHI), monitoring networks. The goodness-

of-fit was evaluated in terms of the percent bias (relative

bias in percent), correlation, RMSE, and NSE at the

daily scale.

f. Software

The merging algorithms in this study were originally

written in MATLAB. Subsequently, these have been

rewritten in R and made publicly available on GitHub

(Zulkafli et al. 2014b).

3. Results

a. Spatial variability of precipitation

A spatial analysis of the mean annual precipitation

across the merged products is presented in Fig. 2. The

figure shows MBC and DS retaining a high degree of

information from TMPA, whereas KED and BCR re-

semble more closely the OK field. These patterns from

MBC,DS, andKEDare reasonable, given that theMBC

and DS methods consider the entire satellite rainfall

field information in the adjustment process, while KED

only uses the satellite information at gauging locations

as an external drift term.However, the pattern produced

by BCR is inconsistent with expectations and thus calls

for further analysis.

The BC method, in theory, is expected to provide an

estimate in between the TMPA and gauge estimates

depending on the degree of reliability in either data.

However, the resulting BCR field suggests that a signif-

icantly high weight was given to the block kriged esti-

mates (i.e., measurements), which could be attributed to

the (estimation) error covariance of the block kriged

rain gauge estimates beingmuch smaller than that of the

TMPA rainfall estimates. Through the comparison of

the experimental variograms and the associated theo-

retical variogram models fitted by the RAINMUSIC
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software (not shown here), it was found that the theo-

retical variograms consistently underestimated the sill

and/or overestimated the range, and as such, under-

estimated the error covariance of block kriging esti-

mates. This relation between theoretical variogram

fitting and (estimation) error covariance can be dem-

onstrated through a sensitivity analysis (see Fig. 3). It

can be observed that the faulty estimation of variogram

parameters could result in extensive areas of low error

variance (Fig. 3b), and consequently, the preferential

use of gauge estimates versus satellite estimates in un-

gauged areas of the field (Fig. 3c). The reason for this

poor fit by RAINMUSIC could be due to the use of

point-to-block variogram estimation, which may over-

smooth the spatial variability of rain gauge measure-

ments over the satellite’s coarse grids. Caution is

therefore required for satellite applications of this

method, as the spatial resolution of existing satellite data

is still limited. The replicate BC algorithm, which used

an OK instead of block kriging for the rain gauge in-

terpolation, yields substantially better results, as are

evidenced by a better retention of the a priori spatial

fields by the merged product (Fig. 2g). Based on this, the

BCR estimates are excluded from further analysis.

Meanwhile, MBC and DS produced slightly varying

results, and this can be better explained using a map of

the residuals between TMPA and the merged products

(Fig. 4). The OK residual field (Fig. 4a) highlights that

TMPA estimates are closer to the OK values in the

mountains than they are in the lowlands. MBC (Fig. 4b)

averages the bias over the entire spatial domain, effec-

tively reducing the intensity of the gauge correction to

the north and the east, as is shown by the distinctly

smooth residual field. On the other hand, with DS, the

kernel effect can be observed (Fig. 4c). Strong positive

residuals are observed in the northwest and likewise

negative residuals in the northeast that are an extension

of the residuals calculated from the nearest group

of gauges.

b. Cross validation against reference rain gauge
estimates

The summary of performance scores (Table 2) in-

dicated improvements in the merged product when

compared to TMPA and OK data. Values of MAE,

RMSE, ME, and NSE were found to improve in all of

the methods, and the KED provided the best scores,

followed by DS and BC.

The spatial distribution of these scores across the

study area reveals some insights into the relative per-

formances between the merging methods. Figure 5

shows the percent bias, which is the ME normalized by

the station average daily rainfall. MBC retains much of

TMPA’s negative bias whereas DS improves along the

Andes. This suggests that the latter has a better capa-

bility for local correction, which is highly important for

such a complex environment as the Andes. To a lesser

extent, both methods also achieve correction in the

lowlands, where the original TMPA is expected to al-

ready perform well. Given OK’s tendency to converge

to rain gaugemeasurements and that themeteorological

FIG. 2. Annual mean precipitation of the TMPA, OK, and

merged products (1998–2008). The black line delimits the San

Regis basin and the silver lines are country borders. The black dots

indicate the locations of gauges used in the data merging. The

Andean range follows the western boundary of the basin.
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FIG. 3. The sensitivity analysis of BC’s variogram parameters performed on 10 Jan 1998. The figure shows (a) three different variogram

parameterizations: (left) good model fit, (middle) overestimated range, and (right) underestimated sill; (b) the corresponding error

variance field; and (c) merged products in comparison to the original (d) TMPA and BK fields.

OCTOBER 2015 NER IN I ET AL . 2161

Unauthenticated | Downloaded 03/01/21 11:48 PM UTC



evaluation takes rain gauge values as reference, OK

performs well in general but in particular in the low-

lands, and KED follows the same spatial pattern. This is

also consistent with the expectation that spatial corre-

lation is higher in the lowlands than it is in the

mountains. Moreover, OK and KED perform better in

highly sampled regions, which is discernible in Fig. 6 in

terms of higher modeling efficiency values at the centers

of rain gauge clusters. Finally, this figure further suggests

that the best merging products overall are achieved

FIG. 4. Annual mean residual between merged products (including OK) and TMPA (1998–

2008). The black line delimits the San Regis basin and the silver lines are country borders. The

black dots indicate the locations of gauges used in the data merging. TheAndean range follows

the western boundary of the basin.
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using OK, KED, and DS. This is in spite of OK

and KED’s poor representation of the spatial patterns

of the annual mean precipitation over the entire

merging field. This highlights another limitation of

the meteorological cross-validation framework when

applied to large areas with an uneven rain gauge

density distribution.

c. Hydrological evaluation: Impact on the water
balance and hydrological modeling at basin and
subbasin scales

Table 3 presents a hydrological evaluation of the

merging algorithms and shows several merging algo-

rithms having a positive impact on the water balance.

The most prominent improvements are seen with the

DS, MBC, and (to a lesser degree) the KEDmethods in

the upper Andean basins Borja and Santiago, where the

runoff ratios are closer to the reference runoff ratio

value of 0.7. In San Regis, the DS andMBC are similarly

successful in reducing the water balance errors whereas

KED increases them. In Chazuta, improvements are

gained with the BC and DS methods, although the

highest improvement in this subbasin is achieved with

MBCS, which is an additional analysis that was run by

excluding the rain gauges located outside the subbasin.

In contrast, OK exacerbates the errors in all basins

compared to TMPA.

The hydrological modeling results are summarized

in terms of the performance scores across the basins.

Figure 7 shows RMSE and relative bias reductions as

TABLE 2. Performance scores from the cross validation of the

merging analysis calculated over 141 wet days between 1998 and

2008. The percent indicates a score relative to the TMPA score.

The average precipitation intensity at the rain gauges is

10.3mmday21. The best scores are in boldface.

MAE RMSE ME

mm % mm % mm NSE

TMPA 8.71 14.32 21.40 20.09

MBC 8.67 20.5 14.18 21.0 21.06 20.07

DS 8.18 26.1 13.03 29.0 0.10 0.09

OK 8.07 12.86 20.03 0.12

KED 7.95 28.7 12.62 211.9 0.09 0.15

BCR 8.86 11.7 14.82 13.5 20.36 20.17

BC 8.34 24.2 13.11 28.4 0.08 0.08

FIG. 5. The percent bias (%) between merging product and rain gauge time series at all cross-validation points.
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well as NSE increases (compared to TMPA) by MBC

and DS, and additionally by BC in Chazuta subbasin. In

contrast, OK, KED, and BC (except in Chazuta) show

generally poorer scores for all four indices—percent

bias, RMSE, correlation, and NSE—compared to

TMPA. InBorja and Santiago subbasins, theDSmethod

also resulted in above zero model efficiency. Over the

entire modeled time series, the NSE improvements

range from 0.1 to 0.5, with the higher increases achieved

at Santiago and Borja.

4. Discussion and conclusions

The results of this case study suggest that the relative

performances of the rainfall merging methods are

strongly influenced by the rain gauge density over the

domain of analysis. Overall, the DS method followed by

the MBC method delivered the most consistent im-

provement over the satellite product in both cross-

validation and hydrological verification performance

scores. Although the geostatistical methods, that is,

KED and BC, did not result in a good hydrological

performance, they nonetheless performed well in the

cross validation and showed the potential to produce

valuable merged rainfall estimates if employed in suffi-

ciently gauged areas. Finally, the underperformance of

methods such as OK and KED in the hydrological

evaluation, which either fully or heavily rely on rain

gauge precipitation, supports the use of satellite-based

products over gridded rain gauge products that utilize

sparse data for hydrological modeling at large scales.

Guided by these observations, we propose in Fig. 8 a

guideline for the selection of a merging method given

FIG. 6. The NSE between merging product and rain gauge time series at all cross-validation points.

TABLE 3. Spatial trends in the average runoff ratios calculated

using observed streamflows and precipitation from gauge-adjusted

TMPA. The expected value for humid tropical regions is between

0.6 and 0.7.

Regis Borja Santiago Chazuta

TMPA 0.66 0.98 1.33 0.79

MBC 0.63 0.96 1.28 0.81

DS 0.61 0.81 0.99 0.76

OK 0.85 1.04 1.35 0.87

KED 0.8 0.96 1.26 0.8

BC 0.74 0.97 1.45 0.75

MBCS 0.52 0.84 1.08 0.71
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data characteristics and constraint and discuss this in the

following.

The rain gauge network density in the studied basin

should be considered when choosing the optimal

merging method. In relatively well gauged basins (less

than 250km2 per gauge), the interpolation of gauge

data only is believed to be sufficiently reliable for

water resources applications (World Meteorological

Organization 1994; Chappell et al. 2013), and simpler

kriging methods such OK are regarded as accurate

interpolation techniques for average daily rainfall

(Collischonn et al. 2008; Buytaert et al. 2006a). How-

ever, large-scale applications might violate the as-

sumption of stationarity (a constant mean) in OK

because of the nature of the spatial variability of pre-

cipitation. KED provides a solution to this by in-

troducing the external drift as observed by the satellite

measurements.

In moderately gauged basins (between 250 and

1500km2 per gauge), merging methods based on geo-

statistics such as BC or KED provide valuable rainfall

estimates, as demonstrated in the Chazuta subbasin.

However, geostatistical methods may still be affected

by a number of practical limitations and fundamental

assumptions. For example, the Gaussian distribution

assumption made during the variance minimization in

the weights estimation does not particularly hold for

applications at fine temporal scale, as daily precipitation

data are typically positively skewed, unlike monthly

accumulations, which are more normally distributed.

Ways around this problem are widely discussed in the

literature, for example, through data transformation

methods (e.g., Müller 2007).
In poorly gauged basins (more than 1500km2 per

gauge), geostatistical merging methods have delivered

unsatisfactory results because of a strong reliance on

rain gauge observations over valuable satellite in-

formation in ungauged areas. A possible cause could be

the assumption of a known semivariogram common to

all kriging estimators. Since the true semivariogram is

unknown in reality, the experimental semivariogram is

used instead in order to estimate the semivariogram

parameters from the data. As far as rainfall fields are

concerned, nonzero precipitation events tend to have a

spatial footprint that negatively correlates to the intensity

of the event (e.g., small-scale convective vs large-scale

FIG. 7. Performance scores of daily streamflow using TMPA vs TMPA-gauge-adjusted products.
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stratiform precipitation). This should be captured in the

experimental semivariogram, but in poorly gauged ba-

sins, distances between rain gauges are often too large

and spatial correlation can be overestimated.

Instead, nonparametric merging methods DS and

MBC have proved to be more robust to data scarcity.

The success of the DS method reflects the spatial het-

erogeneity of the climate and the size of the model field

and supports the idea that distant gauges should have

very little bearing on and should be given minimal

weight in the estimation of unknown points simply based

on their distance alone, particularly in very complex

landscapes such as the Andean Amazon. A local cor-

rection is best achieved by DS that substantially weights

surrounding observed residuals by distance. MBC is

attractive for its simplicity, but the assumption of a

uniform multiplicative bias is a very narrow assumption

given the complexity of the climate and the size of the

domain. This is reflected by the improvements observed

by applying themethod to a smaller scale (withMBCS in

Chazuta subbasin), which in essence is a move toward a

more local bias correction. Extended methods such as

range-dependent mean bias correction have also been

implemented in radar applications (e.g., Amitai et al.

2002) that can be adopted. The range threshold may

further bemade adaptable to the dominant precipitation

processes (large-scale versus convective) in the area of

the rain gauges.

This decision flowchart is intended to be a pre-

liminary, nondefinitive guide to the selection of an op-

timal method given the data characteristics. As it was

developed based on experiences from a region charac-

terized with highly heterogeneous topography and pre-

cipitation processes, we expect this flowchart to hold for

many other regions, at least for humid tropical and (sub)

tropical mountain regions. Alternatively, an ensemble

modeling approach can be considered that utilizes all of

the merging inputs, whereby the model parameters can

be weighted using Bayesian model averaging based on

each model’s reproduction of observed streamflow

(Jiang et al. 2012; Strauch et al. 2012).
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