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The recent 2015–2016 El Niño (EN) event was considered as strong as the EN

in 1997–1998. Given such magnitude, it was expected to result in extreme

warming and moisture anomalies in tropical areas. Here we characterize

the spatial patterns of temperature anomalies and drought over tropical for-

ests, including tropical South America (Amazonia), Africa and Asia/

Indonesia during the 2015–2016 EN event. These spatial patterns of warming

and drought are compared with those observed in previous strong EN events

(1982–1983 and 1997–1998) and other moderate to strong EN events (e.g.

2004–2005 and 2009–2010). The link between the spatial patterns of drought

and sea surface temperature anomalies in the central and eastern Pacific is also

explored. We show that indeed the EN2015–2016 led to unprecedented

warming compared to the other EN events over Amazonia, Africa and Indo-

nesia, as a consequence of the background global warming trend. Anomalous

accumulated extreme drought area over Amazonia was found during

EN2015–2016, but this value may be closer to extreme drought area extents

in the other two EN events in 1982–1983 and 1997–1998. Over Africa, data-

sets disagree, and it is difficult to conclude which EN event led to the

highest accumulated extreme drought area. Our results show that the highest

values of accumulated drought area over Africa were obtained in 2015–2016

and 1997–1998, with a long-term drying trend not observed over the other

tropical regions. Over Indonesia, all datasets suggest that EN 1982–1983

and EN 1997–1998 (or even the drought of 2005) led to a higher extreme

drought area than EN2015–2016. Uncertainties in precipitation datasets

hinder consistent estimates of drought severity over tropical regions, and

improved reanalysis products and station records are required.

This article is part of a discussion meeting issue ‘The impact of the 2015/

2016 El Niño on the terrestrial tropical carbon cycle: patterns, mechanisms

and implications’.
1. Introduction
El Niño-Southern Oscillation (ENSO) is the main cause of interannual variabil-

ity in the atmospheric carbon dioxide growth rate anomalies even when the

seasonal cycle and the long-term upward trend are removed [1]. Some studies
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suggest that the atmospheric concentration of CO2 increases

during El Niño (EN) events, with the tropical forests playing

a crucial role because they become a net source of carbon to

the atmosphere [2]. This also occurs during severe drought

events not necessarily linked to an EN event [3]. Other factors

such as deforestation, degradation and disturbance have been

key in driving tropical forests to act as a net carbon source

during this past decade [4].

In recent years, research has focused mainly on the most

extensive tropical rainforest region in Amazonia, where

severe droughts have occurred with a frequency of 5 years:

2005, 2010 and 2015. Long-term monitoring through forest

censuses suggests a weakening of the Amazon carbon sink

[5] and a particular sensitivity to drought [6]. Recent research

has also pointed out a decline of forest resilience to wildfires

because of an intensification of the interactions between

extreme droughts and fire [7,8]. In general, recent severe

droughts over Amazonia were linked to warm sea surface

temperature (SST) anomalies over the tropical Pacific (EN)

and over the tropical Atlantic [9–12], producing a decrease

in rainfall, low river water levels, high risk of forest fire

and impacts on natural river ecosystems [13]. Although

most studies focused on the Pacific and Atlantic forcing of

Amazonian climate variability, there is evidence that

anomalies in vegetation greenness are linked to global inter-

annual variations in SST, land surface temperature and

precipitation worldwide [14], thus having an impact not

only over Amazonia but also over African and Asian forests.

Recent research suggests an intensification of the dry season

over most African forests, with the drying associated with

enhanced sea surface warming over the Indian Ocean and

warming in the tropical North Atlantic (TNA) [15,16]. In

the case of Asian forests, the ENSO and the Indian Ocean

dipole (IOD) play a key role on regional climate variability

because of their modulation of the monsoon system [17].

The recent 2015–2016 EN occurred in a decade of rapid

warming background, and consequently, it ranked among

the three strongest EN events in recent decades [18]. This

EN event led to record-breaking temperature anomalies and

precipitation deficits over some tropical regions [19], with

still uncertain implications for the carbon balance of the tro-

pical forests and global atmospheric CO2 concentrations

[20]. A large carbon source during late 2015 was observed

over the tropics [21], with the three major tropical regions

of South America, Africa and Asia releasing similar amounts

of carbon to the atmosphere but due to different carbon

exchange processes [22]. This EN event coincided with anom-

alously high temperatures over the Indian Ocean, and with

moderate warming over the TNA.

This paper aims to analyse the spatial and temporal patterns

of thermal anomalies and drought over tropical forests during

EN2015–2016 in the context of the previous strong EN events

and also in the context of long-term variations. The datasets

and methods used in this study are described in §2. Section 3

discusses the warming and drought patterns observed during

EN2015–2016, and §4 discusses the warming and drought pat-

terns observed during EN1982–1983 and EN1997–1998, as

well as during the moderate EN2004–2005 and EN2009–

2010. This section also includes an analysis of the long-term

time series of temperature and drought. In §5, we briefly discuss

the link between central Pacific (CP) and eastern Pacific (EP) SST

anomalies and the observed pattern of drought over land.

Section 6 presents our concluding remarks.
2. Datasets and methods
(a) Delimitation of the study area
The spatial and temporal patterns of warming and drought

analysed in this paper are for the major tropical forest regions.

The study area for tropical forests was selected using moderate

resolution imaging spectroradiometer (MODIS) Land Cover

product (MCD12C1) and pixels classified as ‘Evergreen Broad-

leaf Forests (EBF)’ within the 30 N–30 S latitude band. The

spatial resolution of the Land Cover product (0.058) was aggre-

gated to 0.58 for comparison with the spatial resolution of

climate datasets. Only aggregated pixels with a percentage

of EBF high-resolution pixels (0.058) higher than 75% were

selected for analysis (electronic supplementary material,

figure S1). The selected area includes mainly rainforests in

South America (Amazon Basin), Africa (Democratic Republic

of Congo, Gabon, Congo, Cameroon, Central African Repub-

lic, Equatorial Guinea) and Asia (mainly Indonesia,

including Borneo, Sumatra and New Guinea/Papua New

Guinea). For simplicity, we will refer to these study areas as

Amazonia, Africa and Asia or Indonesia. The term pantropical

will be used to refer to the whole tropical forest area.

(b) Temperature and drought data
We used monthly air (2 m) temperatures from European Center

for Medium-Range Weather Forecasts (ECMWF) ECMWF Re-

Analysis (ERA) Interim reanalysis [23] ‘Monthly Means of

Daily Means’ (MMDM) product (0.758 � 0.758 resolution). A

recent study found a broad agreement between temperature

datasets, and ERA-Interim was also found to be a robust dataset

for the analysis of temperatures in 2015 and 2016 and for long-

term trend assessments [24]. Thermal anomalies were categor-

ized into ‘moderate’, ‘severe’ and ‘extreme’ based on the values

of standardized air temperature anomalies (z-score), which can

be easily interpreted in terms of significance level ( p-value).

These three warming levels were assigned to the standardized

anomalies ranges of 1.65–1.96 (moderate), 1.96–2.58 (severe)

and greater than 2.58 (extreme), with p-values of 0.10–0.05,

0.05–0.01 and less than 0.01, respectively.

We analysed time series and spatial patterns of monthly,

seasonal (JFM, AMJ, JAS and OND) and yearly anomalies,

including also standardized anomalies. In some particular

cases, we also considered half-yearly anomalies (JFMAMJ,

JASONDorAMJJAS).Thereferenceperiod(climatologicalmean)

used to compute the anomalies was 1981–2010. Standardized

anomalies were calculated as the ratio of the anomaly and the

standard deviation of the climatological mean. All products

were resampled to a common grid of 0.58. It is worth mentioning

that we analysed actual anomalies, so the background global

warming trend was not removed from the temporal series.

Results from linear trend removal will be commented on in §6

and electronic supplementary material, figures.

Drought variability was characterized using the self-

calibrating Palmer drought severity index (scPDSI) [25], which

allows the quantification of root-zone drought severity and

extent using readily available monthly historical meteorological

observations or reanalysis [20,26,27]. A basic soil moisture

budget for the rooting zone is used to estimate the standardized

moisture anomalies accounting for local soil water holding

capacity, precipitation (moisture supply) and actual and poten-

tial evapotranspiration (PET; moisture demand). The only

meteorological fields required for input are monthly
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precipitation and PET. Since precipitation estimates over the

tropics based on a single data stream are uncertain [27], we

used the Multi-Source Weighted-Ensemble Precipitation

(MSWEP) dataset [28] to calculate the scPDSI at a 0.58 � 0.58 res-

olution from 1979 to 2016. Unlike other commonly used

precipitation datasets, MSWEP combines the advantages of rea-

nalysis, satellite and in situ records. Monthly PET was computed

from wind, humidity and surface net radiation from the ERA-

Interim reanalysis using the Penmann–Monteith formulation

[20]. Soil water holding capacity data were extracted from the

Food and Agriculture Organization digital soil map of the

world [29]. The calibration of the index was done over the refer-

ence period 1979–2016. Moderate, severe and extreme drought

severity levels were assigned to scPDSI ranges of 22 to 23, 23

to 24 and below 24, respectively.

Accumulated warmed area and drought area was also used

as an indicator for the comparison between different EN events.

Area affected by the different levels of standardized thermal

anomalies and drought was extracted on a monthly basis, and

then monthly areas were summed to obtain the accumula-

ted area within a year. Accumulated area was expressed as

percentage over the total area of the different tropical regions.

(c) Oceanic indices
The Oceanic El Niño Index (ONI) was used to characterize the

strength of the recent EN event compared to other previous EN

events. This index is calculated from the three month running

mean of SST anomalies in the Niño 3.4 region (http://origin.

cpc.ncep.noaa.gov/products/analysis_monitoring/enso-

stuff/ONI_v5.php). EN flavour was characterized through the

E and C indices that correspond to SST anomaly patterns repre-

senting eastern and central equatorial Pacific warming,

respectively. These two uncorrelated indices are based on the

leading empirical orthogonal functions of tropical Pacific SST

anomalies [30]. E and C indices were extracted from the Insti-

tuto Geofı́sico del Perú (IGP, www.met.igp.gob.pe/datos/

EC.txt) (electronic supplementary material, figure S2). Oceanic

indices for characterization of TNA and the IOD were also

used. In this last case, the intensity of the IOD was represented

by the gradient between western and south eastern equatorial

Indian Ocean, named as Dipole Mode Index (DMI). These indi-

ces are also based on SST anomalies over specific oceanic

regions. Values were extracted from ‘The state of the ocean

climate’ initiative (http://sateteoftheocean.osmc.noaa.gov)

(electronic supplementary material, figure S3).
3. Thermal anomalies and drought during EN
2015 – 2016

EN2015–2016 started developing by mid-2015, reaching its

maximum intensity in late 2015 and early 2016 and to

vanish by mid-2016. However, relatively high SST anomalies

were also observed during mid- to late 2014. Figure 1 sum-

marizes the state of the climate over tropical forests in

terms of temperature and drought during this period.

Figure 1a shows half-yearly standardized air temperature

anomalies for the period 2014–2016 using the European rea-

nalysis dataset ERA-interim. An incipient warming is

observed at pantropical level in the second half of the year

2014, and warming was increasing during 2015 and early

2016. Although the intensity of warming was reduced in

late 2016, it was still higher than the warming observed in
late 2014 and early 2015. Therefore, warming over tropical

forests remained in late 2016 when EN conditions had

already vanished.

Monthly air temperature anomalies over the individual tro-

pical regions for the years 2014, 2015 and 2016 are shown in

figure 1c. Amazonia had positive temperature anomalies

from 2014 to 2016, with maximum values from late 2015 to

early 2016. Anomalies are mostly positive in the case of

Africa and Asia, but the magnitude of the anomalies is lower

than in Amazonia. Temperature anomalies were similar over

all the three regions in 2014 and were typically below 0.5 K.

Figure 1b shows the spatial patterns of drought as rep-

resented by the scPDSI for the first and second half of 2014,

2015 and 2016. The first half of 2014 was characterized by a

widespread wet pattern over Amazonia, whereas a dry pattern

began to emerge over northeastern Amazonia during the

second half of the year. This dry pattern spread over the rest

of Amazonia during 2015 and 2016. However, the spatial pat-

tern in 2015 is characterized by a wet–dry dipole from

southwestern to northeastern Amazonia. This wet–dry

dipole was maintained to some extent in 2016. The scPDSI indi-

cated widespread and persistent dry conditions over African

forests during the whole period between 2014 and 2016.

Widespread dry conditions were also evident over Indonesia

but only in the second half of 2015, though permanent dry

conditions were observed over northern Borneo (Malaysia).

The temporal evolution of drought conditions over the three

study areas is shown in figure 1d. In the case of the Amazon for-

ests, a transition from widespread wet conditions in 2014 to

intense dry conditions in 2016 is observed, whereas African for-

ests remained under dry conditions over thewhole period. Asian

tropical forests experienced weaker drought conditions, with

slightly negative values of scPDSI in 2014, a transition to dry

conditions in 2015 and a recovery to neutral conditions in 2016.
4. EN 2015 – 2016 in the context of previous EN
events

(a) EN events 1982 – 1983 and 1997 – 1998
The recent EN event rivals the other two strong EN events in

1982 and 1997, so it is informative to compare the spatial and

temporal patterns of warming and drought to address simi-

larities and differences between EN events (figure 2).

Spatial patterns of standardized air temperature anomalies

for the second half of 1982 and first half of 1983, and for

the second half of 1997 and the first half of 1998, are illus-

trated in figure 2a. This figure can be compared to figure 1a
to analyse the warming patterns for the three recent strong

EN events 1982–1983, 1997–1998 and 2015–2016. EN1982–

1983 was characterized by a widespread warming over

Amazonia in the first half 1983, with almost neutral con-

ditions in the second half of 1982. By contrast, during

EN1997–1998 widespread heat anomalies over Amazonia

are observed both in late 1997 and early 1998. These results

also apply to African and Asian forests, although the magni-

tude of warming was weaker compared to Amazonia.

Figure 2c shows that warming was only evident in early

and mid-1983, whereas warming was observed from mid-

1997 to almost the end of 1998. According to this warming

feature, EN2015–2016 is more similar to EN1997–1998 than

EN1982–1983 (figure 1c).

http://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php
http://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php
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http://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php
http://www.met.igp.gob.pe/datos/EC.txt
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Figure 1. Spatial patterns of half-yearly (JFMAMJ and JASOND) (a) standardized air temperature anomalies and (b) drought index scPDSI, and mean monthly (c) air
temperature anomalies and (d ) scPDSI at pantropical level, over Amazonia, over Africa and over Asia for the period 2014 – 2016. Temperature anomalies were
calculated from the ERA-interim product, and the scPDSI was calculated from the MSWEP precipitation dataset. Grey shading indicates the mean value at pantropical
level within the +1s interval.
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The EN events 1982–1983 and 1997–1998 were character-

ized by widespread drought over Amazonia and Asia

(figure 2b). In contrast, a widespread wet pattern was

observed over Africa in 1982–1983 (except for some areas

in the west of central Africa), and widespread drought was
observed in 1997–1998. Moreover, spatially averaged values

of scPDSI were negative over Amazonia and Asia during

the whole period between 1981 and 1983, but almost neutral

during 1996 and then negative during 1997 and 1998

(figure 2d ). Moist conditions (greater than þ1) prevailed
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Figure 2. Spatial patterns of half-yearly (JFMAMJ and JASOND) (a) standardized air temperature anomalies and (b) scPDSI, and mean monthly (c) air temperature
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over Africa during 1981 and 1982, and dry but close to

neutral conditions during 1983.
(b) EN events in 2005 and 2010
Two severe drought events in 2005 and 2010 were widely

reported over Amazonia. These droughts were attributed to
anomalous high SSTs over the TNA, though 2004–2005 and

especially 2009–2010 were also moderate EN events [9,11].

In contrast to EN events when effects usually peak during the

boreal winter, the droughts of 2005 and 2010 peaked during

the dry season (approximately from April to September). Six-

month (AMJJAS) standardized air temperature anomalies

show a stronger heat anomaly in 2005 over Amazonia and
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Africa compared to 2010 (figure 3a,b), with similar warming

patterns over Asia in both years. However, because of the com-

bination between EN followed by anomalous SSTs over TNA

with a stronger EN event in 2009–2010 than in 2004–2005,

the detailed seasonal evolution of temperature anomalies

suggests that warming during the 2005 episode was mostly con-

centrated during the dry season from April to September,

whereas the 2010 episode actually lasted from mid-2009 to
mid-2010, with a weaker warming observed in JAS season in

2010 (results not shown).

Widespread warm anomalies were also observed over Afri-

can forests in JAS-2005, and to lesser extent over some regions

of Indonesia. Neutral conditions or weak warm anomalies

were observed during 2009–2010 over Africa, with wide-

spread warm anomalies over Asia in AMJ-2010. The highest

values of monthly air temperature anomalies for the period
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2004–2006 are systematically obtained over Africa, whereas

monthly evolution for the period 2009–2011 is similar over

the three regions, with the highest values observed over

Amazonia along 2010 (figure 3c,d).

The spatial patterns of drought during the dry season (JAS)

in 2005 and 2010 were similar over Amazonia, and were charac-

terized by a north–south transition from wet to dry conditions

(figure 3e,f ). However, early 2005 is dominated by widespread

wetness, whereas early 2010 shows a wet–dry dipole similar to

that observed in the recent EN2015–2016 (figure 1b). We will

discuss this similarity in §5. Dry conditions were also observed

over African forests in 2005 and 2010, although the intensity of

drought was higher over west Central Africa. Overall, Asia

showed dry conditions in 2005 (especially in the early part of

the year) and wet conditions in 2010. It is worth mentioning

that widespread drought was not observed in monthly

scPDSI at pantropical level and averaged over the Amazonian

region because the mean scPDSI masks the dipole pattern

and wet–dry values cancel out (mean scPDSI is close to zero

and mostly positive during the periods 2004–2006 and 2009–

2011 at pantropical level and over Amazonia; figure 3g,h).

By contrast, the scPDSI averaged over the African forests area

remained negative during 2004–2006 and 2009–2011.
(c) The long-term context
Results presented in previous sections allowed a comparison

between temperature and drought patterns during EN2015–

2016 and patterns over other strong/moderate EN events.

However, other weak or moderate EN events occurred

during these past decades (see ONI in electronic
supplementary material, figure S2), added to other droughts

as part of the interannual variability. Therefore, we show in

this section the temporal evolution of temperature anomalies

and drought during the period 1981–2016 to place the different

events in a long-term context.

Figure 4 shows time series of yearly means for air tempera-

ture anomalies and the drought index scPDSI over the different

tropical regions. Temperature anomalies (figure 4a) clearly evi-

dence the peaks linked to strong EN events, with years 1998,

2010 and 2016 providing the highest temperature anomalies.

A positive trend in temperature in line with the global warming

trend, especially from year 2000, is also observed.

Droughts also peaked during strong EN events (figure 4b),

but in contrast to air temperature anomalies the drought index

shows significant differences between tropical regions, and a

clear trend is not observed. The results obtained over tropical

Africa are striking, with scPDSI values very different from

the other regions. Africa was characterized by wet conditions

in the 1980s, neutral conditions (except for the dry conditions

observed during EN1997–1998) in the 1990s, and a kind of

drying trend in the past decade (2005–2016).

Monthly temporal evolution of warming and drought

severity over the different tropical forest regions is detailed in

electronic supplementary material, figure S4. Some drought epi-

sodes had strong warming and drought severity over particular

months concentrated on short time-periods, whereas other epi-

sodes led to a lower level of warming and severity but extended

over a longer time-period. In order to take these two factors into

account (warming/drought severity and duration), we show in

figure 5 the accumulated area along one year for the period

1981–2016. The highest values of accumulated warmed area
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(figure 5a) were obtained during EN2015–2016 in all the three

regions, followed by EN2009–2010 and EN1997–1998, except

in the case of Asia where EN2009–2010 provided a lower accu-

mulated area than EN1997–1998. In terms of warming over

Amazonia during the droughts in 2005 and 2010, the affected

area was higher in 2010 than in 2005. Figure 5a also evidences

an increasing long-term trend in warmed area, with a rapid

increase from the 2000s.

In terms of drought area (figure 5b), Amazonia had a simi-

lar accumulated drought area during the three strong EN

events (1982–1983, 1997–1998, 2015–2016), whereas over

Africa the highest values of accumulated drought area

were observed during EN2015–2016, closely followed by

EN1997–1998. The episode of 2005 led also to significant accu-

mulated area over African forests. Asia shows a progressive

decrease in accumulated drought area during EN1982–1983,

EN1997–1998, 2005 and 2010, with an increase during

EN2015–2016. However, drought area over Asia during

EN2015–2016 was lower than in 2005 and the other EN

events. A clear trend is not observed in the accumulated area,

but figure 5b suggests a decreasing trend over Amazonia, an

increasing trend over Africa and neutral to decreasing trend

over Asia (at least for the moderate levels of drought severity).

Spatial patterns of long-term trends in air temperature

and precipitation (electronic supplementary material, figure

S5) evidence a statistically significant warming trend over

the three tropical regions for the JFM and JAS seasons. A wet-

ting trend over most parts of Amazonia and a drying trend

over tropical Africa (mainly over the west part of central

Africa) are evidenced for the JFM season. However, a wetting

trend is observed over Africa for the JAS season.
5. The role of ENSO flavours and other ocean
regions

EN events in 1982–1983, 1997–1998 and 2015–2016 were the

three strongest events since 1980, with similar ONI values
(electronic supplementary material, figure S2). However, the

different contribution of EP and CP anomalies are clearly evi-

denced through the E and C indices. The highest values of E

index are found for EN1982–1983 and 1997–1998, whereas

the highest value of C index is found for EN2015–2016,

with a similar value to the C index for EN2009–2010

(electronic supplementary material, figure S2).

In general, anomalous convective heating during EN

leads to generalized tropical tropospheric warming through

equatorial atmospheric waves [31], which then communicates

to the surface via energy fluxes [32]. Precipitation anomalies

depend on the circulation changes, which depend more

subtly on the convective heating patterns, so EP and CP EN

can have different regional rainfall impacts [33]. These differ-

ences are evidenced in the similar wet/dry pattern in early

2016 and early 2010 over Amazonia (figures 1b and 3f ) in

contrast to drought patterns observed in other events.

In this section, we analysed the correlation between these

indices and the scPDSI to evaluate whether this characteristic

drought spatial pattern can be attributed to a particular

ENSO flavour. CP and EP SST indices resulted in similar pat-

terns of scPDSI variability (figure 6a and 6b, respectively),

generally consistent with the typical ENSO precipitation

patterns [34], but there are some regional differences. In Indo-

nesia and New Guinea, drier conditions are stronger with

warming in the CP than with warming in the EP [35], consist-

ent with the more local control of SST on precipitation

distribution. In northern South America, CP warming also

leads to a stronger drying than the EP, with a particularly

strong signal in eastern Amazon in boreal winter [20,33].

Conversely, EP warming has a local wet effect in western

South America in boreal winter/spring associated with the

southward displacement of the EP Intertropical Convergence

Zone (ITCZ) [33,36,37] and a hint of the wet signal of EN in

southeastern South America. In Africa, the signal associated

with the individual C and E indices is not substantial,

although there are hints of the wet signal in eastern equatorial

Africa associated with CP warming in AMJ.
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On the other hand, the 2015/2016 EN was an unusually

strong event due to its high ratio between SST anomalies in

the CP relative to the EP [18], which is consistent with its

strong dry signal in northern South America (figure 1b) [20],

but the wet anomaly in the western Amazon and the dry

signal in western/central equatorial Africa observed during

that event cannot be explained by the EN SST pattern. In con-

trast, this wet anomaly over Amazonia and dry anomaly over

tropical Africa is driven by TNA SST anomalies, especially in

JAS and OND seasons (electronic supplementary material,

figure S6), leading also to a widespread wet signal over Asia.

Overall, the effect of the Indian Ocean is weaker than tropical

Pacific and Atlantic oceans, and impacts are focused on Asia

(electronic supplementary material, figure S6). Positive DMI

values induce a wet signal over Asia in the JFM season, but dry-

ness in the OND season. Significant correlation is also observed

during JFM over western Amazon (wet signal) and some

regions of tropical Africa (dry signal).
6. Discussion and conclusion
We analysed temperature anomalies and the severity of drought

over tropical forests during the course of EN event in 2015–2016

using different temperature and precipitation datasets. We also

compared the 2015–2016 patterns with previous severe drought

episodes linked to strong EN events (1982–1983, 1997–1998)

and/or linked to EN events combined with SST anomalies in
the tropical Atlantic (2005, 2010). Warming and drought over

Amazonia were more severe in 2015–2016 than in the other

recent droughts driven by Atlantic warming in 2005 and 2010.

Warming in 2015–2016 was also stronger than that observed

in the other EN events in 1982–1983 and 1997–1998, and it

lasted longer (positive yearly mean temperature anomalies at

basin level were only observed in 1983 during the course of

EN1982–1983, and in 1997 and 1998 during EN1997–1998,

but yearly means were positive in 2014, 2015 and 2016). There

is also some evidence for a higher area extent affected by

extreme drought in 2015–2016 when compared to previous

drought episodes. Although this result should be taken with

caution because of the differences between datasets, it is

supported by other recent studies [8,38,39].

Previous studies also identified major drought conditions

over Amazonia in 1988–1989, 1992, 2000 and 2006 [40]. We

also identified these and other drought periods in the long-

term analysis presented in §4c. These droughts are placed in

the context of interannual variability, but they also occurred

under other weaker EN events (see ONI in electronic sup-

plementary material, figure S2). Furthermore, drought

patterns in Amazonia are correlated with SST anomalies in

different regions. In general, north–south drought patterns

are linked to SST anomalies in the TNA and east–west patterns

are observed during EN events [40,41]. However, different EN

events can lead to varying drought patterns over Amazonia

[42]. We found a similar east–west drought pattern during

EN2009–2010 and 2015–2016, both characterized by a strong
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SST anomaly over the Central Tropical Pacific (high C index

value). This is also consistent with historic drought conditions

found in Brazil during EN2009–2010 [43]. A linear correlation

analysis showed that the dry pole over northern/northeastern

Amazon is driven by SST anomalies in the EN region (with a

stronger signal in the CP), but the wet pole over western/

southwestern Amazon is not explained by anomalies in the

EN region alone. In contrast, this wet pole seems to be driven

by TNA anomalies and to lesser extent by the DMI.

Unlike Amazonia, it is believed that African forests are

experiencing a long-term drying trend with occasional drought

episodes [44]. The highest values of thermal anomalies and

accumulated warmed area over Africa were also observed in

2015–2016, followed by the events in 1997–1998 and 2009–

2010. Extreme drought was observed in 2015–2016, with simi-

lar accumulated area extents to those observed during

EN1997–1998. It is worth mentioning that severe and extreme

drought was also observed in the period 2004–2006, in agree-

ment with high water deficits reported in 2005 by other studies

(that continued in 2006 and 2007) [44]. Over tropical Africa, the

link between drought and ENSO was not substantial, and

dryness was driven mostly by anomalies in the TNA, with a

weak signal attributed to the IOD, as also suggested by

Malhi & Wright [45].

Asian forests experienced the strongest warming in 2005–

2016 compared with the other events, but this was not

translated into more severe drought. Drought severity was

higher in 1982–1983, 1997–1998 and 2004–2005 than in

2015–2016. Similar to the African forests, a long-term drying

trend has also been reported over Borneo, leading to progress-

ive tree mortality and massive wildfires intensified during EN

years [46]. We also found a different contribution of CP and EP

SST anomalies, consistent with the influence of the two differ-

ent types of EN on drought conditions over monsoon Asia,

with decadal-scale drought attributed to CP EN events [17].
Overall, our results suggest that unprecedented warming

was observed over tropical forests during the course of

EN2015–2016 under a global warming trend. Unprecedented

severe and extreme drought conditions were observed over

some tropical regions, but similar or lower drought severity

than other EN events was observed over other tropical regions.

A previous study [20] showed that the magnitude of heat

anomalies and drought during EN2015–2016 was enhanced

by background increasing temperatures, at least over Amazo-

nia. When warming trend is removed, the strength of

EN2015–2016 may be reduced but still comparable to

EN1997–1998 (electronic supplementary material, figure S7).

We also found an increase in PET and vapour pressure deficit

in 2015, which contributed to the drought patterns observed

during EN2015–2016 (electronic supplementary material,

figure S8).

Because different precipitation datasets may lead to dis-

tinct drought patterns over the tropics, especially over

Africa [47], uncertainties in precipitation datasets are still an

important limitation for drought severity assessment over

these regions.
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