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Abstract: This study presents a methodology for the regional parameters estimation of the SWAT
(Soil and Water Assessment Tool) model, with the objective of estimating daily flow series in the Pacific
drainage under the context of limited hydrological data availability. This methodology has been
designed to obtain the model parameters from a limited number of basins (14) to finally regionalize
them to basins without hydrological data based on physical-climatic characteristics. In addition,
the bootstrapping method was selected to estimate the uncertainty associated with the parameters
set selection in the regionalization process. In general, the regionalized parameters reduce the initial
underestimation which is reflected in a better quantification of daily flows, and improve the low
flows performance. Furthermore, the results show that the SWAT model correctly represents the
water balance and seasonality of the hydrological cycle main components. However, the model does
not correctly quantify the high flows rates during wet periods. These findings provide supporting
information for studies of water balance and water management on the Peruvian Pacific drainage.
The approach and methods developed can be replicated in any other region of Peru.

Keywords: regional parameters; SWAT; daily flows; Peruvian Pacific drainage

1. Introduction

The basins that drain into the Pacific Ocean of Peru are characterized by small basins with bare
and steep slopes that favor erosion and flooding during intense rainfall events. Rainfall is more
abundant along the north coast and decreases towards the south, where conditions are extremely
arid [1]. The Pacific drainage represents 22% of the Peruvian territory [2], where more than 50%
of the Peruvian population is established and has 2% of all the fresh water available in Peru [3],
generating frequent conflicts between multiple water users regarding its allocation and accessibility.
Currently, 73% of the population lives in urban environments, and it is expected that it (as well as
their living standards) will increase by 2050 to approximately 40 million [4]. Therefore, domestic and
agricultural water use is likely to increase rapidly, even more so in a country where much of the current
agricultural production depends on irrigation and consumes approximately 85% of surface water [5].
Despite the importance of knowing water availability in Peru, previous studies [6–8] have shown
evidence of the limited hydrological data availability in the Pacific drainage (Pd).

The evaluation of the water availability of a basin is generally performed through hydrological
models. Rainfall–runoff modeling is an important area of research for the global scientific community
that addresses the hydrology. A simple reason for this is that quantitative or qualitative flow
information is vital for many practical applications, such as water allocation, long-term planning,
watershed management operations, flood forecasting, optimization of the hydroelectric power
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production, and the hydraulic structures design. Although hydrological models can provide
information on the rainfall–runoff mechanism, they remain abstractions of a real system, and it
cannot be assumed that any of them generate accurate information for specific hydrographic basins
and hydrological conditions [9]. Hydrological modeling requires calibration, which to a certain extent
offers a reliability of the the measured flow rates simulations, especially in the context of (1) lack
of hydrological process understanding, (2) possibly too simplistic representations of the process
(abstractions), (3) the spatio-temporal discretization of highly heterogeneous rainfall–runoff processes,
and (4) the impossibility of measuring all the model parameters required in the application scale [10].
In addition, in regions with little measured hydrological data, such as Peru, the set of parameters
transfer of a calibrated model from one or more basins to a basin without hydrological data is a valid
tool to quantify the hydrological processes that occur within them. This process of transfer is known
as regionalization [11].

Flow regionalization is a challenging task in the hydrology science [12–14]. First, due to the
absence of flow data required for the model calibration, and second, studies evaluating regionalization
methods usually produce different results [12]. Despite this research momentum, there is still no
single accepted approach to predict flows in regions with no hydrological data [15,16]. A large
number of hydrological models regionalization methods have been proposed in the literature. All of
them are based on the concept that information on the hydrological response can be transferred
between hydrographic basins that can be assumed to be hydrologically similar, generally based
on the knowledge of their relevant physical properties. The differences between the approaches
are found in the type of information that is transferred, the method used and the watershed
properties used to quantify the similarity. There are at least three common regionalization approaches:
the regression-based approach, the spatial proximity approach, and the physical similarity approach.
Comparative studies have been conducted in small and large data sets, in multiple hydrological
models and with many variants [12,17–21]. The authors of [16] conducted an exhaustive review of
regionalization studies during the last decade. The most notable studies have had some divergent
results, which are part of the reason why more conclusive evidence is required [12,22]. Most studies
use simple hydrological models with few parameters to preserve a high level of independence and
a good correlation between the parameters and the basins descriptors. For hydrological models
with small parameter spaces and low parameter interdependence, equifinality is often not a problem.
However, if the hydrological model has the opposite attributes, many optimal parameter sets can be
found during calibration. The current modeling philosophy requires that the models be described
transparently and that the uncertainty analysis be performed routinely as part of the modeling work.
This analysis is essential to evaluate the calibrated model strength [23,24].

The SWAT (Soil and Water Assessment Tools) model [25] has shown its strengths in the
aspects detailed above. It has been used both to quantify uncertainty and evaluate regionalization
methods [24,26–30]. In addition, the SWAT model is open source with a large and growing number
of applications in hydrological modeling applied in studies ranging from basin scale to continental
scales. There are few published studies related to SWAT in South America for flow estimation
purposes [31–35]. In Peru, its use is not yet widespread [36,37], although hydrological models
ranging from aggregated to semidistributed have been used in recent years. The references show
that the models in Peru have been developed mainly to evaluate the impact of climate change on
hydrology [38–41], the evaluation of satellite rainfall products for hydrology purposes [42–46] and
there is only one study that performs a parameters regionalization at the scale of the Pd using a lumped
hydrological model [8]. During recent years, some hydrological studies have been developed on
the Peruvian Pd: [47] documented and analyzed the previous hydrological and physical conditions
throughout the study area (54 hydrographic basins) from the 1920 to the 1960s. The authors of [3]
evaluated the water supply and demand in the main basins where water management is prioritized.
They estimated the total annual volume of fresh water available throughout the Pd from the 1970s to
2010. The authors of [6] analyzed mean conditions and flow variability from 1969 to 2004. The authors
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of [48] identified the annual runoff for some hydrographic basins with low water balance disparities
or with quasi-natural conditions on an interannual scale from 1970 to 2008. Finally, [8] quantified
and analyzed the flow variability and seasonality in natural regime in 49 Pd basins by applying a
parameters regionalization methodology from conceptual models. There have been numerous efforts
to evaluate and quantify the water resources in the Pd during recent years; however, there are still no
regional studies with the purpose of estimating natural series of daily flows.

In this context, the objective of this work is to use SWAT to build a hydrological model for the
Pd at subbasin level and at a daily time step. The key objectives of this work are (1) to present for the
first time a regionalization parameters methodology based on a physical basis model, (2) to estimate
water availability in the period 1981–2016 under a context of data scarcity, and (3) to quantify the
uncertainty associated with the parameter regionalization process. In particular, components such
as blue water (water yield plus deep aquifer recharge), green water flow (real evapotranspiration)
and green water storage (soil moisture) are quantified. The estimates of the model at subbasin level
are added to basin levels to compare it with previous studies and to support the obtained results.
This article is organized as follows: Section 3 briefly describes the structure of the SWAT model and
explains the proposed methodology. The calibration results, the estimated regional flow statistical
performance and the uncertainty analysis are discussed in Sections 4 and 5. Finally, Section 6 provides
the summary and conclusions of this study.

2. Study Area

The Pacific drainage (Pd) has an approximate area of 278,482 km2. The study region includes
52 main hydrographic basins with altitudinal variations ranging from 0 to approximately 6500 masl
(Figure 1). These basins have bare and steep slopes and generally drain west from the high Andes to
the Pacific Ocean. In addition, during heavy rainfall events, a high potential for increased maximum
flows, floods and erosion prevails in the Pd [6,48].

Under normal conditions, this region is influenced by the South Pacific Anticyclone in combination
with the Humboldt Current, which produces dry and stable conditions in the western central Andes.
Additionally, this region exhibits greater seasonal and interannual rainfall variability than the other
two main hydrological regions of Peru: the Titicaca and Amazon drainages [6], mainly caused by the
influence of the El Niño Southern Oscillation (ENSO). ENSO generates impacts on the regional climate
worldwide, particularly on the Pacific coast, and these impacts are reflected in the strong El Niño years,
which has a direct influence on rainfall increase (decrease) in the northern (southern) zone [7,49–51],
also causing large economic losses [52].

The study area presents arid and semiarid conditions and, therefore, is prone to threats of water
scarcity for different sectors. The water demand for economical activities (agriculture, mining, industry
and livestock) and domestic use represent approximately 87% of the total national consumption.
Only agriculture represents the greatest consumptive use (86%), whose availability depends mainly on
the irrigation systems located in the basins valleys. In addition to the threat of water scarcity, Pd is
prone to devastating floods [3].
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Streamgages
Studied basins

Elevation (masl)

0 - 1500
1500 - 3500
3500 - 4500
4500 - 5500
5500 - 6500

Figure 1. Spatial distribution of the 14 studied basins in the Pacific drainage and topography from the
Hydrological data and maps base on SHuttle Elevation Derivatives at multiple Scales (HydroSHEDS,
450 m) digital elevation model. Enumerated streamgages listed in Table 1.
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Table 1. Studied Basins along Pacific drainage. Values calculated upstream of the streamgage for basin area (Ab), mean annual rainfall (Rm), mean annual flow (Qm)
and runoff coefficient (Rc). Soil, and land cover attributes (FRST = Forest, PAST = Pasture, BARR = Barren soil).

no River Basin Streamgage
(Data Period) Calibration Period

Ab
(km2)

Rm
(mm)

Qm
(mm)

Rc
(Qm/Rm)

Soil Composition Land Cover Type

Clay (%) Silt (%) Sand (%) PAST (%) FRST (%) BARR (%) Other (%)

1 Tumbes
El Tigre

(1981–2016) January 1981–December 2003 5007 861 746 0.87 34 35 31 0 99 0 0.71

2 Chira
El Ciruelo

(1981–2016) January 1981–December 2003 7050 796 476 0.60 35 34 31 0 88 12 0

3 Piura
Puente Sánchez Cerro

(1997–2016) January 1990–December 2008 7575 510 180 0.35 28 23 49 0 63 37 0

4
Chancay
Lambayeque

Racarrumi
(1981–2016) January 1981–December 2003 2371 768 460 0.60 27 35 38 0 81 19 0

5 Chicama
Salinar

(1981–2016) January 1981–December 2003 3671 477 206 0.43 23 31 46 0 81 19 0

6 Santa
Condorcerro
(1981–2016) January 1981–December 2003 10,404 576 413 0.72 24 35 41 48 45 0 7

7 Fortaleza
Malvados

(2000–2016) January 1997–December 2009 1317 304 134 0.44 30 36 34 0 78 22 0

8
Chancay
Huaral

Santo Domingo
(1994–2016) January 1991–December 2007 1851 429 273 0.64 27 37 37 27 54 19 0

9 Chillón
Obrajillo

(1997–2016) January 1994–December 2008 486 705 333 0.47 24 37 39 40 14 46 0

10 Cañete
Socsi

(1981–2016) January 1981–December 2003 5789 385 281 0.73 25 37 38 54 42 4 0

11 Pisco
Letrayoc

(1981–2016) January 1981–December 2003 3088 494 247 0.50 24 37 40 61 6 33 0

12 Camaná
Huatiapa

(1998–2016) January 1994–December 2008 12,845 458 184 0.40 18 37 46 47 17 36 0

13 Ocoña
Puente Ocoña

(2006–2016) January 2004–December 2011 15,972 367 170 0.46 17 37 47 36 26 38 0.02

14 Tambo
Puente Santa Rosa

(1981–2016) January 1981–December 2003 12,891 254 73 0.29 18 38 44 18 4 78 0

All metadata obtained in the study is in the supplementary materials.
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3. Materials and Methods

The general scheme of the proposed methodology is shown in Figure 2. The first part consisted of
the soil gridded data recompilation and climate data. Then, the hydrological modeling process was
carried out through a parameter sensitivity analysis process and calibration, while the hydrological
similarity was defined through a physical similarity approach. Finally, the parameter transfer
process determined the regional parameters used to estimate the series of daily flow in the entire Pd.
More detail on the explained processes is shown below.

Hydro-meteorological data:
 PISCO products
 Daily runoff records

Five hydrological
regions

Basin characteristics:
 Hydro-climatic variables
 Basin descriptors
 730 subbasins

Data compilation

SWAT model for 14 
Pacific catchments

Defining similarity

14 calibrated
parameter set

Regional 
parameter set 

by region

Bootstrapping

Most sensitivity
parameters (one by one) 

Median values

Results

SWAT model for 
Pacific drainage

Water balance estimation:
 Precipitation
 Evapotranspiration
 Blue Water Flow
 Green Water Storage
 Green Water Flow

Uncertainty
intervals

HRU 
definition

PCA and 
clustering

Basin components:
 DEM
 Landuse
 Soil data

Parameter and 
uncertainty definitionInitial models

Final model

Multi-objective
calibration

Figure 2. The conceptual framework of the study: water balance model flowchart of Pacific
drainage subbasins.

3.1. Hydrological Modelling Platform

Among the semi-distributed hydrological models, the SWAT model has been developed for the
runoff estimation in areas without hydrological measurements [25,53]. SWAT is a physically based
model that operates on a continuous (daily) time scale. In addition, it subdivides a basin into subbasins,
which are connected by a flow network. The subbasins can be divided into hydrological response units
(HRUs), which are unique combinations of land use, soil type and slope. The hydrological simulation
is based on the water balance equation and is divided into two main components: the terrestrial phase,
which simulates the amount of water, sediments, nutrients and pesticide loads in the main channel
of each subbasin, and the routing phase, which simulates the movement of water, sediments and
nutrients through the channel network of the basin to the outlet [54].

The climatic variables of entry to the SWAT consist of rainfall, maximum and minimum air
temperature, solar radiation, wind speed and relative humidity. Optionally, the operations of reservoir
management, lakes, transfers and crop management can also be considered in the model scheme.
Further details of the SWAT can be found in the theoretical documentation (http://swatmodel.tamu.
edu) and in [25].

3.2. Model Input

The model was configured based on freely downloadable data. In the case of geographic data,
ref. [55,56] have shown that the results of the SWAT model are affected by the spatial resolution of the

http://swatmodel.tamu.edu
http://swatmodel.tamu.edu
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aforementioned data. Therefore, the resolutions considered below were selected based on the data
availability for the Pd and the size of subbasins to be delimited (as discussed later in this section).

• The rainfall and temperature data were obtained from the product PISCO (Peruvian Interpolated
data of Senamhi’s Climatological and Hydrological Observations). The daily rainfall database
corresponded to version 2.1 [57], while the daily temperature database (maximum and minimum)
was version 1.1 [58]. Both products are available from January 1981 to December 2016 and have a
spatial resolution of 0.1 degree (∼10 km). These databases are available on the IRI Climate Data
Library website (http://iridl.ldeo.columbia.edu/SOURCES/.SENAMHI/.HSR/.PISCO/index.
html?Set-Language=es).

• The 450-m digital elevation model (DEM) was obtained from HydroSHEDS (Hydrological data
and maps base on SHuttle Elevation Derivatives at multiple Scales). This product is based on
high-resolution elevation data obtained from SRTM (Shuttle Radar Topography Mission) [59].

• The 300-m land-use map used corresponds to 2015 and was obtained from the ESA CCI-LC
(European Space Agency and Climate Change Initiative-Land Cover) project [60].

• The 8 km soil type map was obtained from FAO-UNESCO. The map for Volume IV South
America [61] was taken, which gridded data was released in 2006.

Flow data from 14 streamgages were obtained from the National Service of Meteorology and
Hydrology of Peru (SENAMHI). The observed daily flow series meet the following requirements:
(1) have at least 10 years of record in the period 1981–2016, (2) the series are only minimally affected by
extractions, transfer, and dams; (3) the flow series corresponds to the main basins and covers much of
the total area of the Pd.

3.3. Model Setup

The model was implemented in SWAT 2012 using the QSWAT interface [62]. For the subbasins
delimitation, two criteria were taken: (1) the burn-in option was used from predefined rivers to improve
the delimitation in flat areas [63], and (2) an area threshold was established to be 200 km2. In addition,
the HRUs were defined based on land use, soil type and dominant slope. This configuration was
considered appropriate according to the computational resources available for hydrological modeling
at the drainage scale.

The potential evapotranspiration was estimated by the Hargreaves–Samani method [64] due
to the limited and scarce availability of observed data on relative humidity, wind speed and solar
radiation. In addition, this method has shown good results comparable with Priestley–Taylor [65] and
Penman–Monteith [66] (methods also available in SWAT) in semiarid zones [67]. The model did not
include data on reservoirs operation, lakes or any other hydraulic influence.

3.4. Model Calibration

The SWAT input parameters are based on real processes and must be kept within a range of
realistic uncertainty, so the first step in the calibration process was determinate the most sensitive
parameters of the hydrological model [68]. In this way, from a sensitivity analysis for each parameter
(one-at-a-time), the search ranges of each parameter were identified (ranges that respected the physical
meaning of each one) so that the SWAT model is able to quantify the flow contributed by surface runoff
and baseflow. In addition, as recommended by [69], it was considered to calibrate the model with the
fewest possible parameters.

3.4.1. Evaluation Metrics

The calibration process considered a warm-up period of 3 years, and the statistical performance
was evaluated based on the Kling–Gupta efficiency criterion (KGE) and the logarithmic Nash
index (logNSE).

http://iridl.ldeo.columbia.edu/SOURCES/.SENAMHI/.HSR/.PISCO/index.html?Set-Language=es
http://iridl.ldeo.columbia.edu/SOURCES/.SENAMHI/.HSR/.PISCO/index.html?Set-Language=es
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• Overall performance: KGE is a comprehensive metric, a weighted average of the Pearson
product-moment correlation coefficient (r), the ratio between the mean of the simulated values
and the mean of the observed ones (β), and variability ratio (γ), which is computed using the
standard deviation of simulated and observed (Equation (1)). Kling–Gupta efficiencies range
from –Infinity to 1. The closer to 1, the more precise the model is.

KGE =
√
(r− 1)2 + (β− 1)2 + (γ− 1)2 (1)

• Low flows: By taking the log of simulated (log Si) and observed (log Oi) before calculating the
NSE, the influence of (missing) peak flows is reduced and more emphasis is placed on the base
flow (the criticism of the standard NSE is that it is overly sensitive to the magnitude and timing
of peak flows (Equation (2)).

logNSE = 1− ∑n
i=1(log Oi − log Si)

2

∑n
i=1(log Oi − log Ō)2 (2)

Maximizing the KGE and logNSE, the performance of the hydrological modeling was optimized
from a multi-objective perspective using the correlation, variability and bias criteria [70] and the
performance in the representation of low flow rates. These statistics have been used in previous
studies, resulting in good calibration and good performance in hydrological modeling [71–73].

The calibration and validation of the simulated and observed flows performance was carried out
in 14 basins with daily flow data availability. The calibration period indicated in Table 1 was used
to obtain the calibrated parameters. Then, we validate the performance of the model in two periods:
the subsequent period to the calibration period until December 2016 and the entire period 1981–2016.
The goodness of fit parameters were estimated through the R package “hydroGOF” [74].

3.4.2. Multiobjective Calibration Algorithm

The optimal parameters were derived from the Elitist Non-dominated Sorting Genetic Algorithm
II (NSGA-II) multi-objective calibration algorithm, whose application has provided excellent results in
hydrological modeling using SWAT and has been shown to be more efficient than the Monte Carlo
method to reduce optimized parameters uncertainty [75,76]. Unlike single objective genetic algorithms,
NSGA-II assigns fitness by Pareto ranking (nondomination) and crowding distance to the combined
parent and child populations. A solution (or individual) is nondominated if it performs better in at least
one objective functions and as well in all the other objective functions. The individual is then ranked
according to the number of solutions that dominates it. Crowding distance is the average distance
between an individual and its nearest neighbors in the search space. With the objective functions
as minimization problems, individuals that are dominated by fewer solutions (i.e., has a lower
rank) are given a better fitness than the dominated ones. In cases where the solutions have the same
nondomination rank, the individual with larger crowding distance is preferred, thus ensuring diverse
and well-spread population. The new parent population is chosen from the combined parent and child
population based on the individuals’ fitness or rank, thus the elitist selection.

NSGA-II nondominated sorting algorithm has a computational complexity O(MN2), where M
is the number of objectives and N is the size of a population P. For each solution two parameters
are calculated in the algorithm: (1) the domination count ni which is the number of solutions that
dominate the solution i and (2) a set of solutions Si that the solution i dominates. The solutions of the
first non-dominated front are identified in Steps 1 to 3 of the algorithm and the solutions in higher
fronts are searched in Steps 4 to 6. The algorithm is as follows:

• Step 1: For each i ∈ P, set ni = 0 and Si = Ø.
• Step 2: For all j 6= i and j ∈ P, if i dominates j, Add j to the set of solutions dominated by i: Si = Si

U j. Otherwise, increment the domination count of i: ni = ni +1.
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• Step 3: If ni = 0, keep i in the first non-dominated front P1 and set the front counter k = 1.
• Step 4: While Pk 6= Ø, initialize Q = Ø for storing the next non-dominated solutions.
• Step 5: For each i ∈ Pk and for each j ∈ Si, update nj = nj – 1. If nj = 0, j belongs to the next front

and update Q = Q U j.
• Step 6: Set k = k +1 and Pk = Q, go to Step 4.

Further details of NSGA-II can be found in [77]. The calibration algorithm was implemented
through the R library “nsga2R” [78], setting KGE and logNSE as objective functions.

3.5. Regionalization Using the Physical Similarity Approach

The similarity approach consists of transferring hydrological information from donor basins
(with flow data) that are similar to basins without flow data based on basin descriptors. For this,
the climatic and physiographic variables of [12] are detailed in Table 2.

Table 2. Distributions of hydro-climatic characteristics and descriptors of the 730 Peruvian Pacific
subbasins used for clustering.

Basin Characteristics Notation
(Unit) Min 25th Percentile Median 75th Percentile Max

Hydro-Climatic Characteristics

Mean annual rainfall Rm (mm/year) 0.53 21 143 470 1219
Mean annual potential evapotranspiration Em (mm/year) 1064 1326 1511 1679 2768
Mean annual flow Qm (mm/year) 0 0.1 14 108 588
Runoff coefficient Qm/Rm (-) 0 0.01 0.08 0.28 0.61

Descriptors Used

Basin area Ab (km2) 0.56 222 321 495 1735
Basin slope Sb (-) 0 0.08 0.17 0.26 0.55
Mean basin altitude Zb (m) 0 536 1753 3460 4868
Drainage density dc (-) 0.001 0.035 0.057 0.09 0.75
Fraction of forest cover fc (-) 0 0.06 0.26 0.56 0.99
Latitude lat (-) −18.2 −15.6 −12.8 −6.9 −3.5
Longitude long (-) −81.2 −79.2 −76 −72.7 −69.9

3.5.1. Clustering Dataset

There are a variety of cluster analysis techniques available to group basins into groups
with similar characteristics. However, not one of them has been proven to be better than the
others [79]. To group the Pd subbasins into regions assumed to be hydrologically homogeneous,
Ward’s hierarchical classification method [80] and principal component analysis (PCA) were used.
The Ward method minimizes the total internal variance of each identified cluster, while the PCA
reduces the dimensionality from a large number of interrelated variables while retaining most of the
variation of the data used [81]. The variables in Table 2 were estimated from the input and the output
data obtained in the first run of the SWAT model (without calibration) for a total of 730 Pd subbasins.
The subbasins were delimited according to the criteria mentioned in Section 3.3.

The estimated clusters or regions were validated by Dunn and Silhouette indices, which are
mainly used to choose the optimal number of clusters without the need for additional external
information [82–84]. Dunn Index represents the ratio of the smallest distance between observations
not in the same cluster to the largest intra-cluster distance. If the data set contains compact and
well-separated clusters, the largest distance is expected to be small and the smallest one is expected to
be large. Silhouette index defines compactness based on the pairwise distances between all elements in
the cluster, and separation based on pairwise distances between all points in the cluster and all points
in the closest other cluster. In both cases, the index should be maximized.

This validation procedure was carried out using the R library “clValid” [85].
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3.5.2. Parameter Transfer Scheme

The calibrated parameters from a limited number of basins (14) were used to represent the
hydrological characteristics in each region. To increase the amount of calibrated parameters set
for each basin, an strategy of considering the default (uncalibrated) SWAT parameters sets was
chosen. For example, in the case of basins with streamgages not located at the point of exit of the
basin, the resulting calibrated SWAT model would have two parameters set: parameters set from the
subbasins upstream of the streamgage and the default parameters set from subbasins downstream of
the streamgage.

The subbasins belonging to the same region were considered similar. In this context, unlike the
approach presented in [86], the calibrated parameters set located in each region were grouped to obtain
the regional parameters through the median. From them, the evaluation was performed by comparing
the simulated and observed daily flows for the period 1981–2016 in the 14 studied basins.

3.6. Uncertainty Analysis

Under the assumption of equifinality, two basins belonging to the same region could have
parameters set that are not correlated, which could clearly be problematic for regionalization studies.
In this case, the model parameters are only correlated with basin attributes, which undermines the
basic hypothesis of methods based on similarity [23].

In this study, the uncertainty associated with the parameters set selection process for regional
hydrological modeling was analyzed. A stochastic process was used to quantify uncertainty in
simulated daily flow series based on the findings of [23], in which the parameters set available for
each region were resampled by bootstrapping [87]. The resampling was repeated 500 times, and then
confidence intervals of the bootstrapping distribution were taken at the 95th percentile (lower limit:
0.025 quantile and upper limit: 0.975 quantile) to define the uncertainty bands (UB). The quantification
of the uncertainty degree was evaluated based on the coverage ratio (CR) and average width index
(AWI), which represent the amount of observed data that are contained in the UB and its width
respectively [88–90].

The CR quantifies the statistical reliability of the derived UB to contain the value of the observed
flow (QO,T) (Equation (3)).

C =

{
1 if QO,T > QL,T and QO,T < QU,T

0 if QO,T > QL,T | QO,T < QU,T

}

CR =
1
T

T

∑
i=1

C

(3)

where C is equal to 1 in the time step if the observed flow rate (QO,T) is greater than the lower limit
of UB (QU,T) and less than the upper limit of UB (QU,T); and 0 otherwise. The resulting series (C)
is added and divided by the number of time steps (T) (that is, the total number of observed flow to
calculate the CR). The CR provides a proportional measure that goes from 0 to 1, where 1 represents a
perfect value (the uncertainty intervals contain all the values of the observed flow) and 0 indicates that
the uncertainty intervals do not have reliability to contain these values.

The AWI is a measure of the sharpness of the UB and quantifies the capacity of the UB to capture
the system natural variability and the expected simulations of the model. The AWI is a measure of
overlap between the width of the 95th percentiles of the observed flow duration curve (called AWclim)
and the average width (AW) of the uncertainty intervals, which is calculated as the average of the
absolute difference between the upper and lower UB in all time steps. This is calculated as shown in
Equation (4):

AWI = 1− AW
AWclim

(4)
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where AW is the average width index of the UB time series, and AWclim is the absolute difference
(width) of the quantiles 0.025 and 0.975 of the observed flow duration curve. An AWI value greater
than 0 indicates that the derived UB reduces the uncertainty of the model output compared to the
climatology natural variability, represented by the 95th percentile of the observed flow duration curve.

4. Results

4.1. Defining Similarity by Clustering

Prior to clustering, PCA was used to reduce the dimensionality of the 11 variables shown in Table 2.
Table 3 shows that the first 5 components explain approximately 90% of the accumulated variance,

and their eigenvalues are greater than 0.8. The mean annual rainfall (Rm), mean annual flow (Qm) and
runoff coefficient (Rc) show a high correlation with the first component. Latitude (lat), longitude (long),
mean basin altitude (Zb) and mean annual potential evapotranspiration (Em) are better correlated with
the second component, while basin slope (Sb) and fraction of forest cover (fc) are better correlated with
the third component. The basin area (Ab) and drainage density (dc) variables have a high correlation
with the fourth and fifth components; however, the latter has a little contribution to the total variance
(less than 10% each) and have no greater implication in the posterior clustering.

As shown in Figure 3, there is a break (elbow) that starts from the fourth principal component,
which implies 4 clusters for this case. This number is adjusted from Ward’s hierarchical clustering by
comparing other situations (from 4 to 7 clusters) and validated by maximizing the Dunn and Silhouette
indexes. Finally, the 730 subbasins delimited in the Pd were grouped into five clusters. These clusters
or regions characterize the particular behavior existing in the northern zone (regions 1 and 2) of the
Pd [7] and present at least one streamgage in each of them.

Table 3. Weightings of the variables and summary of characteristics on the five principal components.

Original Variables
Principal Components

PC1 PC2 PC3 PC4 PC5

Rm −0.457 −0.105 0.221 −0.040 0.147
Em 0.163 0.460 0.025 0.173 0.038
Qm −0.416 −0.011 0.385 0.022 0.194
Rc −0.399 0.108 0.395 0.089 −0.032
Ab −0.085 −0.148 −0.242 0.639 −0.202
Sb −0.152 −0.316 −0.481 −0.276 0.191
Zb −0.155 −0.514 0.091 −0.024 −0.096
dc 0.098 0.151 0.167 −0.656 −0.339
fc −0.348 0.031 −0.452 −0.215 0.222
lat −0.321 0.407 −0.188 0.011 0.006

long 0.253 −0.433 0.250 −0.005 0.016

Eigenvalues 3.816 3.036 1.571 1.155 0.815
Variance (%) 31.8 25.3 13.1 9.6 6.8

Cumulative variance (%) 31.8 57.1 70.2 79.8 86.6

4.2. Regional Runoff Model Performance

Five parameters of SWAT model were calibrated for 14 basins with daily flow data using the
procedure described in Section 3.4. The optimal parameters for each model were obtained by evaluating
the model performance in a calibration period (see Table 1) and validated in two period (as indicated
in Section 3.4). Among them, the SURLAG parameter allowed to control the correct quantification of
high flows as much as possible, while the parameters of GWQMN and RCHRG_DP were the most
important to quantify correctly the flows from aquifers and to improve the simulated flows in dry
periods. The SOL_AWC and SOL_BD parameters were important to control the flow contribution
from the subsoil.
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Figure 3. Percentage of variance explained as a function of the number of principal components.
Dunn (D) and Silhouette (S) index are showed from 4 to 7 clusters (maximum values obtained for
5 clusters).

First, we evaluate the performance from the calibrated parameters. As can be seen in Table 4,
the calibration and validation of the model gives good results based on KGE, however the model
performance decrease based on the logNSE in some basins. For the whole period (1981–2016),
the results show that the performance in terms of the KGE is very satisfactory (values between
0.57 and 0.84) and is best evident in the central and northern basins of the Pd. In terms of logNSE,
low flows were estimated with lower performance (values between 0.1 and 0.8), especially in the Santa
(0.16) and Tambo (0.1) basins. In general, the calibrated parameters allowed to correctly estimate the
daily flows rates compared to the initial estimates (without calibration). These improvements became
more evident in the low flows quantification than the simulated high flows (as discussed below in
Section 4.4).

As described in Section 3.5.2, the calibrated parameters of each SWAT model were transferred
to the entire Pd. Then, the regional parameters (see Table 5) were applied to estimate regional daily
flows in the Pd. Figure 4 shows the performances comparison between the simulated flows from
calibrated and regional parameters in the period 1981–2016. It is observed that the performance
decreases when estimating the regional flow in terms of the KGE, but they are still in a satisfactory
range. The regional logNSE maintains the same overall performance with respect to the calibrated
logNSE. In some cases, statistics tend to improve when applying the estimated regional parameters
with respect to the previously calibrated parameters. This demonstrates the principle of equifinality of
non-parsimonious models such as SWAT, where more than one parameters set can equally or better
satisfy the objective function. Table 4 shows that the performance to estimate regional flows at daily
step is good (average KGE of 0.58), with some exceptions in the Santa and Pisco basins (KGE 0.42 and
0.38, respectively). In addition, acceptable results were obtained in the low flows simulations (average
logNSE of 0.48) without considering poor performance in the Ocoña basin (from calibrated logNSE:
0.31 to regional logNSE: −2).

How it is seen in Figure 5, low flows are systematically underestimated during dry periods
(as seen in the Chancay Huaral basin). Furthermore, the maximum daily flows are underestimated
in most cases (as can be seen in the scatter plots), probably due to the loss of their representativeness
when regionalizing the SURLAG parameter.



Water 2020, 12, 3198 13 of 26

Table 4. Overall model performance for the 14 studied basins. Performance indicators compare daily
simulated and observed flow. Regional evaluation was performed from regional parameters set.

No. River Basin
Initial a Calibration a Validation b Whole Period

(1981–2016)
Regional

(1981–2016)

KGE logNSE KGE logNSE KGE logNSE KGE logNSE KGE logNSE

1 Tumbes 0.33 −3.41 0.63 0.44 0.58 0.66 0.64 0.44 0.5 0.19
2 Chira 0.37 −3.85 0.72 0.62 0.7 0.64 0.75 0.61 0.69 0.59
3 Piura 0.53 0.87 0.78 0.83 0.53 0.74 0.73 0.79 0.62 0.61
4 Chancay Lambayeque 0.33 −3.19 0.81 0.76 0.85 0.79 0.84 0.77 0.64 0.55
5 Chicama 0.18 0.26 0.63 0.81 0.4 0.77 0.66 0.8 0.52 0.75
6 Santa 0.14 −7.92 0.57 0.24 0.59 0.13 0.57 0.16 0.42 0.15
7 Fortaleza −0.18 −0.03 0.8 0.33 0.59 0.49 0.74 0.4 0.7 0.49
8 Chancay Huaral 0.06 −3.51 0.72 0.54 0.74 0 0.73 0.38 0.59 0.41
9 Chillón 0.53 −4.06 0.62 0.48 0.72 0.63 0.69 0.54 0.61 0.54

10 Cañete 0.15 −1.8 0.6 0.72 0.71 0.41 0.69 0.63 0.5 0.66
11 Pisco 0.14 0.52 0.53 0.72 0.67 0.35 0.58 0.62 0.38 0.6
12 Ocoña 0.63 −8.01 0.77 0.3 0.72 0.3 0.79 0.31 0.58 −2
13 Camaná 0.71 −5.27 0.82 0.55 0.76 0.4 0.79 0.48 0.68 0.58
14 Tambo 0.65 −0.68 0.71 0.25 0.1 −0.2 0.59 0.1 0.69 0.14

a Tested in the calibration period indicated in Table 1. b Tested in the subsequent period to the calibration
period until December 2016.

Table 5. Regional parameters for each cluster or region.

Parameter Name Parameter Description [54] Regional Parameters
Region 1 Region 2 Region 3 Region 4 Region 5

GWQMN
Threshold depth of water in the
shallow aquifer required for return
flow to occur

542.70 773.14 469.32 524.16 503.31

RCHRG_DP Deep aquifer percolation fraction 0.82 0.05 0.85 0.45 0.87

SOL_AWCr Available water capacity of
the soil layer −86.47 −41.00 −83.34 −85.37 −12.50

SOL_BDr Soil bulk density 22.59 0 51.67 19.91 0
SURLAG Surface runoff lag coefficient 0.40 1.75 2 2 1.06

r relative change of the parameter by percentage (%) applied to default value.
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Figure 4. Comparison of the Kling–Gupta efficiency criterion (KGE) and logarithmic Nash index
(logNSE) performance metrics tested from calibrated and regional parameters in the period 1981–2016
(logNSE from Ocoña catchment was excluded in the figure).
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4.3. Quantification of Water Resources and Water Balance

The results presented in Figure 6 are based on the simulated time series obtained in the 730
delimited subbasins. In the Figure 6a it can seen the 5 regions identified by cluster analysis.
Then, if a basin water balance is considered as follows: the flow contribution (Q) added to the
real evapotranspiration rate (ET) is equal to the amount of precipitated rainfall (PP); Figure 6b shows
that subbasins belonging to lower latitudes (northern zone of the Pd) have a higher water production
rate compared to subbasins belonging to higher latitudes (southern zone of the Pd). In addition,
it is observed that losses produced by ET have an inverse pattern. The five estimated regions
capture the particular characteristics of the Pd hydrological regime. Figure 6c shows that there
is a marked seasonality of the Pd hydrological components for each region. It is observed that in
region 1, the contribution of PP is greater and consequently has greater water production. For the
other regions, the PP contribution is similar in quantity. Some characteristics of the study area are
observed in all regions, in which ET rates are estimated at equal or greater magnitudes than Q rates.
This particularity, added to the fact that the potential evapotranspiration (ETP) is much higher than
the PP, is an indicator that Pd is an area predominantly arid (PP/ETP < 1; [48]).

Figure 7 shows the results of regional flows expressed in terms of average annual specific runoff
and annual runoff time series over 52 basins under natural conditions for the period 1981–2016.
These results are a new contribution that complements and updates what was presented by [8].
The water availability of the Pd is quantified at the exit points near the Pacific Ocean and indicates the
runoff values expressed as water yields. The maximum value of 17 l/s/km2 corresponds to the Tumbes
basin (basin furthest north in Figure 7a), while very low values (basins in red) are observed in the
southern region (e.g., Caplina basin: 0.015 l/s/km2). Figure 7b groups the northern basins (Region 1–2),
which represent the largest water contribution. Figure 7c,d (Regions 3 and 4, respectively) group the
central basins, which are characterized by pluvio-nival and pluvio-glacial regimes (e.g., Santa basin).
This characteristic regime of the Pd central basins is moderately reduced until reaching Figure 7e
(Region 5), which groups basins that present the most arid conditions. The average annual runoff
(black dotted line) in each region also follows a regional hydroclimatic pattern with extraordinary
events during the ENSO years. This is observed for extreme El Niño events in the years 1982/1983 and
1997/1998 in the northern basins. In contrast, low values are present in the southern basins during the
same events.

Considering the average annual flows of the 52 basins shown in Figure 7, the total flow that
drains to the Pacific Ocean in the period 1981–2016 is 990 m3/s and 872 m3/s without considering
the ENSO extreme events of 1982/1983 and 1997/1998 (Figure 7f). These results are consistent with
those presented by [8], in which total flow is estimated at 709 m3/s from the contribution of 49 basins,
and with past studies in which only the observed flow data were considered (as listed in [3]): ELECTRO
PERU in 1975 (1025 m3/s), ONERN in 1980 (855 m3/s), CEDEX in 1992 (924 m3/s) and ANA in 2012
(802 m3/s). From a continental hydrological perspective, considering a total flow contribution of
approximately 26,540 m3/s on the western coast of South America [91], our results corroborate that
the rivers along the arid Peruvian coast contribute very little flow to the ocean.

Water resources are often quantified in terms of blue water flow, which is the water yield plus
the deep recharge of the aquifer. Based on [92], the storage of green water (soil moisture) has been
widely recognized as a crucial component of water resources. Using the calibrated SWAT model from
the regional parameters, the long-term average blue water resources (1981–2016), green water storage
and green water flow (real evapotranspiration) are shown for the 730 subbasins delimited in the Pd
(Figure 8). The results show a well-defined spatial variation that is mainly a function of altitude and
related to rainfall patterns. Blue water resources, green water storage and green water flow are greater
in the middle and upper parts of the basins. The blue water flow (green water storage) has a greater
presence in the north (south) zone, while the green water flow has a uniform distribution throughout
the Pd. One way to take advantage of this information is by identifying areas with lower blue water
resources and higher soil moisture because they are areas that have greater potential for the rainfed
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agriculture development, an important production activity in Peru. The runoff–rainfall ratio map
(a derivative blue water map) serves as an indicator of erosion potential, which is predominantly
higher in the northern zone, usually due to the high rainfall rates. It should be noted that the estimated
storage and green water flow were not directly calibrated since there were no direct observations;
however, they are presented here as a first quantification of these resources for the Pd.

Figure 5. Daily hydrographs of the observed and simulated (regional) flows for one basin by region in
the period 1981–2016.

4.4. Performance of the Uncertainty Bands at Streamgages

As explained in Section 3.6, the uncertainty bands (UB) evaluation was carried out based on
the coverage ratio (CR) and the Average width index (AWI). The CR ranges from approximately
0.19 to 0.81, with mean and median values of 0.57 and 0.63 respectively. This CR is lower than those
obtained in previous studies [88–90], which is explained given the different methodologies applied
when estimating UB. The AWI analysis indicates that the UB are in a scenario in which they reduce the
uncertainty of the simulated flows in comparison with the climatology natural variability (average of
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AWI 0.82 in a range of 0.72 and 0.90). The satisfactory values of AWI is the result of all criterions taken
in the parameters sensitivity analysis when calibrating the SWAT model (explained in Section 3.4);
in this way, the values obtained do not differ much from each other, producing that simulated flow
time series variability in the bootstrapping are not extremely wide in all streamgages analyzed.

(a)

(b)

(c)

Figure 6. Water balance of Pacific subbasins. (a) Regions estimated by clustering, (b) Real
evapotranspiration ratio (ET/PP) and flow ratio (Q/PP) calculated for each subbasin, (c) Hydrological
components seasonality estimated in each region. Enumerated streamgages listed in Table 1.

Figure 9 shows that the KGE and CR values show a similar variability pattern (medians of 0.60 and
0.63 respectively). In addition, the CR values tend to show a positive correlation with the hydrological
modeling performance (KGE). In some cases, a good KGE performance can be related to different CR
values and viceversa. In the case of AWI, independent of the KGE values, is showed values between
0.7 and 0.9. There is not much variability in this index, so it is inferred that the AWI would always
remain in that range if more streamgages were included in the analysis.
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Figure 7. Spatial distribution of natural runoff (1981–2016) estimated by over 52 Pacific drainage basins.
(a) Mean annual specific runoff by basin. (b–e) Annual time series and runoff variability grouped by
region. (f) Total annual flow reaching 872 m3/s. Region (1–2), (3), (4) and (5) starts at Tumbes, Chancay
Lambayeque, Rimac and Ocoña basin respectively.
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Considering all the UB and observed daily flow of the 14 streamgages, Figure 10 shows that the
CR values vary from month to month. The UB contains a higher (lower) proportion of the observed
flow in dry (wet) periods during May–November (December–April). It is not the objective of the
present study, but this analysis establishes that the estimated regional parameters for SWAT model
do not allow to quantify correctly the maximum flows in the considered streamgages along the Pd.
The UB for December–April contain, on average, 50% of the observed flows.
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Figure 9. (Left): Distribution of simulated flow performance (KGE) and uncertainty intervals
performance (CR, AWI). (Right): Relationship between KGE and its respectives CR and AWI values on
14 streamgages of Pacific drainage.
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5. Discussion

5.1. Subjectivity in the Physical Similarity Approach by Clustering

This article presents a methodology for flow rates estimation through hydrological modeling
following a parameter regionalization approach. Although the SWAT model was used, the selected
regionalization method is independent of the chosen hydrological model. The regionalization
technique is based on the similarity approach, a method that transfers the optimal parameters set
from calibrated hydrographic basins to similar hydrographic basins. In addition, this method is
recommended over regression and spatial proximity methods [12,16,18,23] and has shown good
performance in hydrological modeling in arid zones [18,93]. In our work, similarity is defined by
subbasins grouping with physical and hydroclimatic characteristics that try to explain the hydrological
behavior. Although the PCA prior to the definition of clusters or regions eliminates much of
subjectivity when selecting the most influential similarity variables, it should be mentioned that
the basin characteristics most commonly available (topography, land use, soil and climate) are not
sufficient to fully explain the hydrological response [17,94,95], and it is suggested to incorporate
additional basin characteristics [11]. It is likely that this includes hydrogeological characteristics
and/or basin flow regulation characteristics [30], data of difficult availability in the Pd.

5.2. Physical Implications of the Regional Parameter Set

The results of this study indicate that the five regionalized parameters can be used to produce
satisfactory simulations from SWAT model in the Pd. The values shown in Table 5 are mainly related
to the climatic conditions of the study area. In the case of the RCHRG_DP parameter, the high values
obtained (close to 0.9) indicate that the Pd is an area where rivers are predominantly recharged by
aquifers and have high potential for water harvesting [96]. Previous studies have observed that
the SWAT model underestimates low flow rates in dry and wet periods [97,98], and consequently,
the model has been modified and even coupled to other models (e.g., MODFLOW). to improve the flow
contributions from aquifers [99–102]. It is not the objective of the present study to modify the SWAT
source code, but we emphasize the importance of calibrating the RCHRG_DP parameter to improve the
low flows representativeness, especially in Pd basins. In addition, this parameter sensitivity is evident
when it is regionalized; for example, in the Ocoña river basin, the performance of the logNSE decreases
considerably (see Table 4) because the value of RCHRG_DP is reduced, which causes the model to
underestimate dry periods flow. Set a suitable threshold (GWQMN) for there to be a contribution from
the aquifer is also very important. For the Pd, these values are between 500 and 800 mm and allowed
to correct the initial low flows underestimations. Although in SWAT the groundwater routine is very
simplistic, these first results suggest the need for detailed groundwater studies in the Pd and to have a
better physical interpretability of these parameters.

The parameter values of SOL_AWC and SOL_BD indicate that the Pd is characterized by an
arid climate and a predominantly sandy soil (Table 1). The percentage increase of SOL_BD is related
to lighter soils that have a lower water holding capacity than heavier or clayey soils. On the other
hand, the high rates of potential evapotranspiration (Figure 6) in arid climates generate high water
losses to the atmosphere. The parameter SOL_AWC allows to regulate the amount of available
water in the soil for the evapotranspiration process, and a decrease in its value corrects the initial
underestimations of SWAT model and thus improves the initial performance of the KGE (Table 4).
Finally, the SURLAG parameter is important to correctly simulate the high flows according to its
physical definition (see Table 5). From the initial SURLAG calibrated parameters, the simulated high
flows generally underestimated the observed ones in most of the studied basins; however, this was a
fairly acceptable underestimation. Although the PISCO rainfall product does not correctly capture the
intensity of the rainfall [57], one of the main factors of the low representativeness of high flows could
be attributed when the flow is obtained from the regional SURLAG parameters (as shown in Figure 5).
In the present work, greater importance was given to the water balance representation, and we indicate
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that for a better high flow estimation, it is recommended to condition the SWAT calibration based on
indices that evaluate only the extreme flows behavior.

5.3. Conditionality of the SWAT Calibrated Model and Its Applicability

It should be noted from the beginning that hydrological models calibration is subjective and
that no automatic calibration algorithm can replace the analyst knowledge in relation to the basin
hydrology and calibration problems. Therefore, the calibration and uncertainty analysis are closely
linked, and calibration results should not be presented without an uncertainty degree quantification
in the model predictions [24]. In this context, the uncertainty analyzed in this study serves as a
first approximation to evaluate the calibrated parameters set performance obtained by each region.
While we use bootstrapping to increase the number of available parameters per region and to present
a more consistent analysis of the UB, we can say that the uncertainty associated with regionalization
process has yielded good results mainly due to the criterions used in the calibration process to reduce
the equifinality of SWAT model. It is understood that more streamgages should be taken into account
for a better analysis; however, indicating the processes that the model is not adequately representing is
a “high value information” for decision makers. Based on the above, the water resources quantification
in the Pd presented here should be taken into account according to the objectives for which the SWAT
model was built. Having a regional model that estimates natural flow series and correctly represents
the Pd basins water balance is useful for identifying long-term relationships with climate variability
and climate change impacts, and to be applied for water resource management purposes.

6. Summary and Conclusions

This study proposes a methodology for daily flows estimation in the Pacific drainage of Peru from
a physically based model (SWAT). In most large-scale hydrological models, the calibration process
of model parameters is critical and even more so for areas with limited availability of hydrological
data. A parameter transfer method was proposed based on an approach of physical similarity and
clustering that divided the Pacific drainage (divided in 730 subbasins) into five regions assumed
to be hydrologically homogeneous. Fourteen basins were calibrated to subsequently estimate the
regional parameters based on the median of the calibrated parameters set available in each region. As
a first approximation to evaluate the methodology robustness in the parameter regionalization process,
by means of statistical techniques such as bootstrapping, the uncertainty bands were derived in each
evaluated basin. The results show that the SWAT model with regional parameters can simulate the
observed flows well and correctly represent the seasonality of the hydrological cycle main components.
The high rates of potential evapotranspiration on precipitation and the particular flow behavior in the
northern zone of the Pacific drainage are equally well represented.

At the annual level, flow series pattern variability along the drainage and the total flow
contribution to the Pacific Ocean show similarity with previous studies. Certain relationships were
found between values of the calibrated parameters and physical-climatic characteristics of the basins
studied; however, a greater analysis was not possible due to the absence of observed data to support
our assumptions. Similarly, the water resources quantification based on components of blue water,
green water storage (soil moisture) and green water flow (real evapotranspiration) allowed us to obtain
a better understanding of water availability and variability in the Pacific basins, which should serve as
a tool for better use and management of its water resources. The evaluation of derived uncertainty
bands indicated that the high flows are not correctly quantified; however, the natural variability of
observed flow climatology is well represented. These results support the idea that flows are better
simulated from a calibrated model than from a regionalized model. In addition, the idea is supported
that the best way to handle the problem of rainfall–runoff modeling in uncalibrated basins would be
to install a streamgage.
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The present study adds to the research efforts in the hydrological modeling field at the regional
scale that have been carried out in recent years on the Peruvian Pacific drainage. A first step
is presented to expand the use and development of physical bases hydrological models for their
application at a regional scale, and the presented parameters transfer approach is promising to estimate
SWAT parameters in areas with scarce hydrological data in Peru. Future studies will be dedicated
to investigating the flow rates sensitivity in a context of climate change and exploring calibration
techniques in hydrological modeling to correctly estimate annual maximum daily flows.

Supplementary Materials: The metadata is available online at: https://figshare.com/articles/dataset/SWAT_
Pacifico_main_outputs/13236941.
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