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Abstract: The biodiversity present in Peru will be affected by climatic and anthropogenic changes;
therefore, understanding these changes will help generate biodiversity conservation policies. This
study analyzes the potential distributions of biomes (B) in Peru under the effects of climate change.
The evaluation was carried out using the random forest (RF) method, six bioclimatic variables, and
digital topography for the classification of current B in Peru. Subsequently, the calibrated RF model
was assimilated to three downscaled regional climate models to project future B distributions for
the 2035–2065 horizon. We evaluated possible changes in extension and elevation as well as most
susceptible B. Our projections show that future scenarios agreed that 82% of current B coverage will
remain stable. Approximately 6% of the study area will change its current conditions to conditions of
higher humidity; 4.5% will maintain a stable physiognomy, but with an increase in humidity; and
finally, 6% will experience a decrease in humidity but maintain its appearance. Additionally, glaciers
and swamps are indicated as the most vulnerable B, with probable losses greater than 50% of their
current area. These results demonstrate the need to generate public policies for the adaptation and
mitigation of climate effects on B at a national scale.
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1. Introduction

There is complex spatial and temporal variability in the existing vegetation on conti-
nents, which influences the resources available to support human well-being, biodiversity,
and the biogeochemical cycle [1–3]. Climate and vegetation interact bidirectionally on
many temporal and spatial scales; a clear manifestation of this interaction is the global
pattern of vegetation cover and climate. Thus, climate can be considered the most influ-
ential factor in the distribution of vegetation and its characteristics on a global scale [4].
The ecological units that describe these vegetation variabilities in an organized manner are
called biomes. Biomes are defined as similar geographic regions where living organisms
with physiologically common characteristics are well adapted and strongly correlated with
the regional climate [5]. These units are generally defined at large scales grouping similar
ecological units.

With the B presenting a close relationship with climate, there are different models
that explicitly incorporate climate variables such as Holdridge [6], who produced a life
zones system scheme (B) that describes large vegetation formations described by climatic
variables: precipitation, temperature, and potential evapotranspiration. Walter [7] similarly
defined the B in terms of the climatic zone they occupy (zonobiomes), with modifications
that include soils and orographic characteristics. Recently, the remote sensing (RS) of
terrestrial coverage with satellites has allowed the creation of new B distribution maps [2]
where the boundaries between the vegetation units are ostensibly defined objectively [8].

Based on these RS data, the evaluation of the changes has traditionally been performed
with bioclimatic envelope models (BEMs) or with dynamic global vegetation models
(DGVMs) [9,10]. The first is a correlative approach based on a strong relationship between
the current climate and the distribution of vegetation, while the second is more realistic
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due to the consideration of ecological processes. The DGVM requires more information for
their calibration, so it is linked to greater uncertainties in the estimates of their parameters.
Meanwhile, BEM only requires climate information, which makes it more suitable for
measuring the effects of climate change in developing countries where data are limited [11].
BEMs are based on statistical techniques or machine learning (ML) models. In recent years,
with the increase in information on spatiotemporal forcing factors for determining B, BEM
models have become more commonly used in ecology [11–13].

The B in Peru is quite variable, as are the existing climates in Peru; an approximation
of them are continental ecosystems. A recent study of the Ministry of the Environment
of Peru [14] identified 36 continental ecosystems in Peru, of which 11 were in the tropical
forest region, 3 were in the Yunga region, 11 were in the Andean region, 9 were in the
coastal region, and 2 were aquatic ecosystems. Since the B in Peru are linked to the climate
and other factors such as phenological behavior and especially recently to changes in land
use and vegetation cover, they are prone to changes, especially at more local scales [15]. It
is estimated that by the end of the 21st century, warming in South America will increase by
over 2 ◦C compared to historical records. Precipitations present greater variability in their
future projections but suggest decreases in the Amazon and in Southern South America
and increases in the Northern Andes [16]. Additionally, it is expected that as a result of
these climatic changes, the B, considering the different future scenarios, between 5% and
6% of the total vegetation area in Latin America, will undergo changes towards the end of
the 21st century [17].

In this context, by varying the climate, changes are inferred in the spatial distribution
of the biomes that will lead to extinctions and diversification of species due to a faster
migration rate [12]. In the case of Peru, studies have been conducted in the Andes; for
example, Tovar et al. [18], who focuses on the Andean part of Peru, finds that only between
13% and 17% of the Andean region will exhibit significant changes in their B for the
2010–2039 and 2040–2069 horizons, with glaciers, paramos, and evergreen montane forests
being the most threatened B. Bax et al. [19] reviews the implications of climate change
in conservation plans since protected areas located in montane forests would be affected.
Ramirez–Villegas et al. [20] projects that by 2050, the paramos and punas of the tropical
Andes will have a reduction in their species and high rates of species alteration, with the
most affected population being located between 800–1500 amsl. However, studies that
encompass Peru as a whole have not been reported in the literature.

This study tries to answer the following questions: (1) How reliable does RF reproduce
current biomes? (2) What is the impact of climate change (2035–2065) on the distribution of
biomes in Peru? The novelty of this document is that it includes for the first time the entire
Peruvian territory to estimate the biomes in Peru and evaluate the impact of climate change
for the period 2035–2065 using future scenarios based on regional climate models for Peru.

2. Materials and Methods

The study area covers the entire region of Peru, located in the center-west of South
America from latitudes 0◦ to 18◦ S and longitudes 68◦ to 82◦ W. The total area is approxi-
mately 1.27 million km2 and covers extremely variable regions with different precipitation
regimes. Climate variability is due to the complex orography of the Andes, the cold sys-
tem of the Humboldt current, and the El Niño phenomenon [21,22]. According to Olson
et al. [3], there are six types of biomes in Peru: tropical forest; tropical and subtropical
broadleaf forests; tropical and subtropical dry broadleaf forests; savanna; deserts and
xeric shrublands; grasslands; and montane shrublands. However, given the importance
of some ecosystems for conservation planning, in this study, we used the biomes defined
by Tovar et al. [18] in the tropical Andes with a slight modification of the rainforest area.
The biomes defined are (1) evergreen montane forest (EMF), (2) seasonally dry tropical
montane forest (SDTF), (3) humid puna (HP), (4) paramo (P), (5) montane shrubland (MS),
(6) xeric pre-puna (PP), (7) glaciers (GC), (8) xeric puna (XP), (9) Yunga forest (YF), and
(10) swamp (SW). The present configuration of the B was obtained by grouping the Na-
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tional Map of Ecosystems of Peru prepared by the Ministry of the Environment (Ministerio
del Ambiente—MINAM) [14] using the biome classifications described. Table 1 shows the
percentage of area occupied by each biome in Peru while Figure 3 shows the present spatial
distribution. In addition, a column was added indicating the relative humidity level on a
scale from 1 to 10; 1 being a very dry biome and 10 a very humid biome [18].

Table 1. Distribution of biomes in Peru, percentage of coverage area, type of predominant ecological
structure, and relative humidity level.

Peruvian Biomes Area % Plant Life Form Humidity Level

EMF 42.44 forest 8
SDTF 2.42 forest 7

HP 12.84 grassland 4
P 1.08 grassland 5

MS 8.06 shrubland 6
PP 5.85 desert 1
GC 2.32 desert 2
XP 0.91 grassland 3
YF 13.53 forest 7
SW 4.84 forest 9

2.1. Precipitation and Temperature

The gridded climatological data of precipitation and temperatures (minimum and
maximum) were generated from the mixture of data from conventional climatological
stations and continuous covariates in space. These products are found at a time scale of
monthly climatology (1981–2010) and spatially at a resolution of 200 m2 [23].

To generate precipitation data, 654 stations were used. The data cover areas of Peru,
Colombia, Ecuador, Bolivia, and Brazil. Precipitation was interpolated using the Shuttle
Radar Topography Mission (SRTM) digital elevation model as covariates; the global precipi-
tation product Climate Hazard Infrared Precipitation with Stations (CHIRPS) version 2 [24];
and geographic coordinates (latitude and longitude). Finally, a multiple linear regression
model (R) plus a residual inverse distance weighted (RIDW) interpolation was used to
perform the mixture and generate these climatological maps.

For the maximum and minimum temperatures, RIDW was used considering the
SRTM covariates geographic coordinates and soil surface temperature, where the latter
was obtained from the moderate-resolution imaging spectroradiometer (MODIS) product
MOD11A2 day/night [25]. A total of 442 weather stations were used, also considering
stations located in neighboring countries.

To date, these weather grid data are the ones that have been used by most stations
in their construction compared to other previous products in Peru [23,26]. Statistical
validations and focus group with contributions from experts were carried out for final
approval. The spatial distribution of the climatologies can be observed in Figure 1.

2.2. Bioclimatic and Geographic Variables

For the creation of the B classification model, bioclimatic variables (BVs) were used.
In this regard, in the first phase, 19 BVs were defined by WorldClim (Table A1) [27]. To
estimate the BV, the dismo package of the R programming language was used [28], as
well as the historical climatology 1981–2010 of precipitation—temperatures described in
the previous section. Once the BVs were calculated, we proceeded to select the most
independent ones by filtering through a Pearson correlation matrix. By means of this
matrix, only the BVs that presented a correlation lower than 90% were selected. The
selected BVs were mean annual temperature, monthly temperature range, isothermality,
temperature seasonality, annual precipitation, and precipitation seasonality. In addition,
we used the elevation data taken from the SRTM.
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Figure 1. Multi-year climatology (1981–2010) of left: minimum temperature (◦C), center: maximum
temperature (◦C), and right: precipitation (mm).

2.3. Regional Models of Climate Change

The climate scenarios were obtained by reducing the advanced research ARW core
of the weather research and forecasting model (WRF-ARW) version 3, a dynamic scale of
the regional climate model (RCM) simulations [29]. The forcing factors of the WRF-ARW
model for climate simulations were the data of the CMIP5 climate models (ACCESS 1.0,
HadGEM2-ES and MPI-ESM-LR) [30–32] corresponding to the historical period 1981–2005
and future 2006–2065 considering the scenario of high carbon emissions RCP 8.5. The
postprocessing of the scenarios was performed using the linear scaling technique [33] and
climate data of the PISCO gridded product [26].

2.4. Modeling of Biomes

To classify biomes, we selected the machine learning algorithm called random forests
(RFs). RFs are the average model of a set of classification or regression trees. Each tree is
trained with a random subsample of the original sample and a subsample of the available
predictors. The trained trees are used to predict the classes based on the majority of votes of
the predictions. This modeling scheme reduces the possibility of overtraining since the trees
that make up the assembly have low correlations and high variance [12]. Additionally, ran-
dom forests are efficient for finding nonlinear patterns that are frequent in ecology [34–36].
The parameters of each tree and the number of estimators were optimized through a grid
search. In total, 400 classification trees were constructed using the Gini criterion.

The workflow for the development of this research can be seen in Figure 2. Initially, we
modeled the present configuration with RF. The main assumption is that current climatic
conditions can define the pattern of B distribution in the present. The data were divided
into two databases, one for training (80%) and another for validation (20%). Both the
training and validation bases maintain the proportionality of the distribution of B present
in the complete database.
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Due to the heterogeneity of coverage of the different B, the accuracy indicator would
be biased by Bs with larger areas, possibly due to overtraining of the classification models.
For this reason, the performance indicators that we use are precision and sensitivity. The
accuracy helps us to know how good the model is, correctly identifying the types of B in
its predictions, and the sensitivity gives us a detection ratio of the total detected areas of
the B to be classified. The consistency of the RF model was evaluated by cross-validation
considering the indices described above and evaluating their variance. In this way, we
reduced the effect of possibilities on training. To evaluate the goodness of fit of the model
classification, we reviewed its performance indices and the consistency of its classifications
using 5-fold cross-validation in the training data.

The software use to carry out all process was the library scikit-learn [37]. The library
provides with the RF implemented as well as the metrics used.

2.5. Correction of Climate Change Scenarios

The ability of RCMs to simulate the Earth’s climate system is limited by the inherent
simplifications that they incorporate. The direct use of these data is considered too biased
for studies of the impact of climate change that are frequently carried out at a fine spatial
scale. In this sense, postprocessing is necessary, which consists of a correction (statistical or
dynamic) in an attempt to improve the viability of these simulations [38–40].

The RCM data used have gone through various processes to correct this bias. However,
they used other databases. To ensure consistency with the information of this study, the
delta method was applied [38]. This method consists of adding the difference between
the simulated future climate and the present to the observed climate of the present. This
approach assumes that the biases of the local model (of the grid) are constant over time [38].
The correction was for:

Temperature: additive bias correction

VDM
sim = Vpre

obs +
(

V f ut
sim − Vpre

sim

)
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Precipitation: multiplicative bias correction

VDM
sim = Vpre

obs ∗
V f ut

sim

Vpre
sim

where VDM
sim : corrected future simulation, Vpre

obs : present observation Vpre
sim : simulation of the

present time, and y V f ut
sim : simulation of the future time.

2.6. Future Biomes

We executed the fitted biome distribution model using the bias-corrected data of
the RCMs to obtain future biomes. The RCMs have the climatic variables necessary to
derive the future VBs conditions for the modeling of B, that is, monthly precipitation and
monthly minimum and maximum temperatures. The projections are for the 2035–2065
horizon and the RCP 8.5 emission scenario, which was the basis for the RCMs. In total,
3 RCM projections were obtained, which were named after the forcing factors: ACCESS 1.0,
HadGEM2-ES, and MPI-ESM-LR.

2.6.1. Evaluation of Changes in Future Biomes

The area changes in B due to the projections of the RCMs are evaluated at the national
level differentiating the projected future and present spatial distributions of B. Conversion
matrices of present–future biomes were constructed, indicating a range that consists of the
minimum, median, and maximum values of the relative (%) and absolute (km2) changes.
This range allows us to manage the uncertainty of climate projections. The rows of these
matrices are the present configuration, and the columns are the future ones.

2.6.2. Vertical Displacements in Biomes

The percentage relationship of accumulated area is plotted versus elevation, that is, the
hypsometric curve of each B. This representation was performed together for the present
distribution and the projected future distributions. The graph allowed us to evaluate
the vertical displacements of the elevations and the occupied areas for the B towards the
period 2035–2065.

2.6.3. Regions Most Susceptible to Changes in Biomes

To estimate the susceptibility of the biomes, the agreement between the 3 RCMs
for future projections was taken into account. Basically, we evaluated the changes in
vertical structures based on the movements between the physiognomies and the changes in
moisture levels associated with each biome; see Table 1. The categories of agreement for
this document were adapted from Tovar et al. [18] and were the following: (1) increase in
vertical structure, (2) increase in vertical structure and moisture, (3) increase in moisture and
stable plant physiognomy, (4) no change, (5) decrease in moisture and stable physiognomy,
(6) decrease in vertical structure and moisture, and (7) decrease in vertical structure. For
the result of the agreement to be located in any of the aforementioned categories, it was
necessary that at least 2 of the 3 models coincide. Otherwise, it was classified as an eighth
category, divergence.

3. Results
3.1. Selection of the Biome Classification Model

Table 2 was constructed with the training data (80% of the total data) and summarizes
the efficiency indicators for RF while Figure A2 shows the dispersion in box plots. RF
presents consistency in the cross-validations since its uncertainty is reduced (small standard
deviation) with an average value in each fold of approximately 0.80.
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Table 2. Efficiency indicators of the cross-validations for each bioclimatic model using the training
data (80% of the current map).

K-Fold
Precision Recall F1 Score

RF RF RF

1 0.805 0.897 0.842
2 0.802 0.894 0.839
3 0.803 0.894 0.840
4 0.804 0.898 0.842
5 0.802 0.895 0.839

Mean 0.803 0.896 0.841
Standard deviation 0.001 0.002 0.001

The RF confusion matrix (Table 3), indicates that the model in general has a complete-
ness above 0.80. This means that the model is sensitive for detecting biomes. However,
this high sensitivity was compensated with a lower precision since the model significantly
overestimated some biomes, such as P, SW, and GC. HP and MS were erroneously classified
as P in some cases, EMF as SW, and HP as GC. However, these classification statistics by
RF are acceptable and show results superior to those of Tovar et al. [18].

Table 3. Confusion matrix of biomes with RF (pixels) constructed with the test data (20% of the
observed map). The rows represent the biomes of the present map, while the columns represent the
biomes classified by RF. The number of correctly classified pixels is displayed on the diagonals.

EMF SDTF HP P MS PP GC XP YF SW Recall

EMF 98432 700 287 96 269 98 71 26 2155 7568 0.90
SDTF 16 5819 0 0 319 80 0 0 44 0 0.93

HP 13 1 28851 725 1217 0 2017 226 351 0 0.86
P 0 0 29 2521 69 0 5 0 105 0 0.92

MS 1 556 1127 450 17792 545 15 244 230 0 0.85
PP 7 113 0 0 389 14776 0 0 0 0 0.97
GC 0 0 879 23 6 0 4744 231 0 0 0.81
XP 0 0 34 0 69 0 116 2275 0 0 0.91
YF 526 181 349 505 275 0 0 0 33226 2 0.95
SW 980 0 0 0 0 0 0 0 2 11591 0.92

Precision 0.98 0.79 0.91 0.58 0.87 0.95 0.68 0.76 0.92 0.60

The spatial patterns of the present configuration of B performed with RF can be
visualized in Figure 3. We can see a slight overestimation of the biomes: SW, P, and GC as
described in the previous paragraph.

3.2. Vertical Displacements

Almost all B showed a vertical displacement in elevation, especially in their upper
limit, except for SW, which receded at lower altitudes (see Figure 4). The SDTF biome
significantly raised its average altitudes compared to the others. The YF in turn presented
a vertical displacement of its lower boundary. The three RCMs showed agreement in the
elevation changes.

3.3. Extension Changes in Biomes

The changes in the distribution of B areas were evaluated for the present (1981–2015)
and future (2035–2065) periods using the median of the 3 RCMs. Figure 4 shows the
migration of a present B to others in the future based on climate change scenarios in
percentage values, while Table A2 are absolute values in thousands of km2. The diagonal
indicates the stable percentage of the ten B. The sum per row in Figure 4 is the current
100% coverage distributed in the future biomes, while the sum of the columns in Table A2
indicates the total area (km2) in the future for each biome.
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The configurations of the B in the future project that 82% of the current distribution
would remain stable; these results are similar to those of Tovar et al. [18]. The B that
conserves almost the entirety of its present area is EMF, maintaining 96.4% having migrated
in reduced quantities, and 2.83% towards the SW biome. Meanwhile, the B with the
greatest losses was SW, which only maintained 30.8% of its present area. The second B
with the highest losses was the CG, which changed towards HP by 42%. The relatively
stable B were MS, PP, and YF, which conserved 89.82%, 81.79%, and 81.85% of their current
area, respectively.

3.4. Regions Most Susceptible to Changes in Their Biomes

In Figure 5, it is observed that comparing the 3 RCMs for 2035–2065, the B special-
ization maintained stable 83% (agreement) of the currently occupied B area distributions.
The approximate changing area represented 17%, while the area in disagreement (diver-
gence) was 0.12%, which was a very small amount. Furthermore, the changed area was
divided as follows: Increase in moisture and stable plant physiognomy (4.47%), decrease in
moisture and stable physiognomy (5.88%), and finally an increase in vertical structure and
moisture (5.87%).
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The areas of greatest change were in the northern part of the country, with Loreto
and Piura being the departments with the greatest agreement towards a change in their B
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(Figure 5). We can observe a considerable decrease in humidity in the north of the Amazon
due to temperature increases in the area (see Figure A1). Likewise, this area presented a
high migration from SW to EMF.

The increase in humidity and stable physiognomy was distributed between the north-
ern coast and the Peruvian forest, while the increase in vertical structure (4.47%) and
humidity (5.87%) was distributed along the Andes with a greater spatial dispersion, see
Table 4 and Figure 5. These areas projected migration towards EMF for the former and
MS-SDTF for the latter.

Table 4. Biome migration matrix from the present (1981–2010) to the future (2035–2065) in percentage
using the median of the 3 RCMs. The results in parentheses show the relative extent min–max of
biomes that migrate.

EMF SDTF HP P MS PP GC XP YF SW

EMF 96.4
(95.7–98.4) 0.11 0.24 0 0.18 0.05 0 0.01 0.24 2.83

(0.6–3.5)

SDTF 28.85
(24.6–32.6)

66.55
(60.8–70.7) 0 0 2.86

(1.9–5.5)
1.4

(0.8–1.9) 0 0 0.39 0

HP 0.04 0 78.35
(75.5–86.7)

1.94
(0.7–4.9)

12.48
(9.1–17.1) 0 0.74

(0.3–1.0)
1.19

(0.7–4.7)
1.69

(0.5–1.7) 0

P 0 0 7.82
(5.9–9.6)

60.01
(59.9–62.1)

20.36
(20.2–25.2) 0 0.03 0 9.65

(8.7–10.0) 0

MS 0.05 4.56
(4.2–4.9) 0.82 0.51 89.82

(89.2–89.9) 1.58 0 0.05 2.55
(1.2–3.3) 0

PP 0.81 7.62
(4.2–10.8) 0 0 9.78

(8.6–11.9)
81.79

(76.2–86.9) 0 0 0 0

GC 0 0 41.99
(39.4–44.4) 0.34 0.09 0 44.95

(43.3–45.1) 12.58 0 0

XP 0 0 11.65
(0.5–16.1) 0 16.41

(11.5–21.2) 0.06 0.59
(0.5–1.3)

66.34
(66–87.3) 0 0

YF 16.38
(14.8–22.92)

0.79
(0.7–1.5) 0.04 0.09 0.85

(0.7–4.1) 0 0 0 81.85
(70.9–83.6) 0

SW 69.19
(56.6–94.2) 0 0 0 0 0 0 0 0 30.81

(5.7–43.3)

4. Discussion

The methodology developed has allowed us to appreciate the possible effects caused
by climate change in the B in Peru, evaluating the consistency of three future climate
projections based on regional climate models. However, as in any projection model, the
methodological uncertainties related to the climate models and the present B modeling
process must be mentioned to be considered in the conversation plans and decision-making
in the face of climate change. In the following sections, we discuss the weaknesses and
strengths of our results, as well as the results obtained for the 2035–2065 horizon.

4.1. Changes in Biomes

Our results show that the montane shrubland and xeric puna have an increase in area
under the effects of climate change. As these B are located at medium elevations, they can
move to higher altitudes to find their equilibrium and therefore have a better adaptation.
In contrast, B with higher humidity suffer contraction and losses of areas mainly in sectors
with lower elevations. These displacements have also been observed in other studies [5,18].
This pattern of elevation displacement can be explained by the water balance since, when
there is an increase in temperature (shown in our projections), the availability of water can
be reduced by increasing evapotranspiration.

It is worth mentioning that the displacement of B could force farmers to move to higher
altitudes and increase the cultivation areas. This process can lead to greater difficulty in the
adaptation of biomes during their migration. For example, Ovalle Rivera et al. [41] mention
that increases in temperature could increase deforestation to develop coffee crops. These
human interventions limit the development of potential areas of emerging biomes. In Peru,
there are agricultural areas between 3000–3500 amsl that hinder the migration of forests to
higher areas [42].

Although our study only considered changes due to climate change at the B level,
the species that inhabit them could be affected by the threat of extinction or displacement
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to higher elevations [43,44]. These migrations can create competition between migrant
and existing species. In addition, new climatic conditions can increase the difficulty of
adaptation since they would be developing in less time compared to the last ice age [45–47].

4.2. Most Susceptible Biomes and Projected Changes

The B with the greatest risk to be reduced are glaciers and swamps. The projected
losses for both are greater than 50% of their present area. For the former, the difficulty
of not being able to move to higher altitudes with lower temperatures is one of the main
causes of their losses. The latter, having drier conditions due to temperature increases,
undergoes a process of change of vegetation from palm trees to wood trees, since they
support conditions with lower humidity.

The estimated areas of discrepancy were reduced, which may be due to the use of
only 3 RCMs compared to other studies [16,48]. Additionally, it is observed that there is a
direct relationship between the vertical displacements and the humidity levels; that is, an
increase in the humidity level implies an increase in the vertical structure, while a decrease
in humidity generates a decrease in the vertical structure. Tovar et al. [18] argue that these
vertical reductions affect carbon storage.

In contrast, our results show that the evergreen montane forest and seasonally dry
tropical montane forest are quite stable, consistent with what has been observed in the past
30 thousand years [12]. However, only the evergreen montane forest will increase its area
with area migrations to where the swamps are in the present.

4.3. Analysis of the Modeling of Biomes

The modeling of the present B with RF manages to represent the existing complexity
in the climatic limits of each B [36,49]. One way to improve the model is by using the
assemblies of various machine learning models, as presented by Bax et al. [19]. However,
RF is itself an assembly model of several decision trees, which is why it has a higher
performance compared to other classification algorithms.

Additionally, the reduced dispersion of the efficiency indicators shown by RF in the
cross-validations indicates consistency on the part of the model to perform simulations
with data that have not been used in its calibration. However, the interpretability of the
model is complicated. Even so, the independent sensitivity of RF for the detection of B is
high compared to the results obtained by Tovar et al. [18]. This sensitivity to classify biomes
in this study benefits the determination of B with less national coverage, such as glaciers.

Another of the difficulties present in the research is the small number of climate models
used in the evaluation of the changes in B. The uncertainty associated with future climate
projections is not properly quantified. However, agreement was observed in the RCMs
used. Additionally, some studies make future projections for more horizons so that they can
be identified when a conservation policy can intervene [17]. Despite this, the identification
of vulnerable areas demarcated in this study allows decision-makers to focus adaptation
plans for economies dependent on ecosystem services at risk [50,51].

It should be noted that the comparison of trends and results between the different
studies is difficult since the initial delineation of the boundaries of the Bs varies from study
to study. This variation can be explained by current remote sensing tools that allow us to
focus on macroscopic characteristics ignoring plant characteristics and focus more on the
phenology and functional types of plants, so there is subjectivity when delimiting the B
limits [52]. In addition, the grouping of biomes can be arbitrarily biased to reach a high
efficiency in the performance indicators, which denatures ecological characteristics and
transforms the problem to a purely numerical optimization approach.

Finally, our model does not consider land uses in the estimates. This omission may
have led to more optimistic results than those that could be presented in the future. For
example, an increase in agricultural areas or tree felling has been observed, whose impact
is not estimated in our modeling [53]. The change in land use affects the dynamics of the
ecosystem and the control of natural flow, so there is a need to balance the short-term
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ecosystem benefits and the long-term future climate costs associated with conservation
plans [54]. A future update of the results should consider changes in land use and an
expansion of the number of climate change models. A better understanding of ecological
relationships could improve the selection of predictor variables and provide a better
approximation of the present and future situation.

5. Conclusions

In this study, the map of present biomes at a spatial resolution of 1 km were estimated
using the random forest model with in situ data for Peru. It was possible to prove not only
the efficiency of the random forest for the classification of biomes for its prediction stability
but also the predictive capacity of the bioclimatic variables despite the complex climatic
variability present in Peru.

Regarding the impact of climate change on the distribution of biomes, based on
3 regional climate change models, our results are similar to other studies since a stable area
of 83% of all present biomes, which were in our vertical displacement projections, was
estimated. Additionally, it was possible to identify that the most susceptible biomes with
losses greater than 50% of their present area were swamps and glaciers. These susceptible
areas would be under water stress, which would cause a migration of species and changes
in their physiognomy. It should be noted that these projections do not consider land use,
even though in recent years and in future projections, they project large changes in the land
use of important areas.

Future work should focus on improving the delimitation of current biomes as eco-
logical knowledge advances. In addition, on improving the classification models with
better data quality and the inclusion of human activity, such as land use. Despite our
simplifications in this study, a consistent analysis on the biomes in Peru is provided for
decision-makers and the scientific community.
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Appendix A

Change in Precipitation and Temperature

It is possible to quantify the probable change in the climatic variables that determine
the biomes in the future. Figure A1 shows the percentage change in temperature (min-
max) and annual precipitation (in the period 2035–2065 with respect to 1981–2010) at the
national level.
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Appendix B

The Table A1 presents the bioclimatic variables defined by WorldClim.

Table A1. Bioclimatic variables.

Bioclimatic variables

BIO1 = Annual Mean Temperature

BIO2 = Mean Diurnal Range (Mean of monthly (max temp—min temp))

BIO3 = Isothermality (BIO2/BIO7) (×100)

BIO4 = Temperature Seasonality (standard deviation ×100)

BIO5 = Max Temperature of Warmest Month

BIO6 = Min Temperature of Coldest Month

BIO7 = Temperature Annual Range (BIO5-BIO6)

BIO8 = Mean Temperature of Wettest Quarter

BIO9 = Mean Temperature of Driest Quarter

BIO10 = Mean Temperature of Warmest Quarter

BIO11 = Mean Temperature of Coldest Quarter

BIO12 = Annual Precipitation

BIO13 = Precipitation of Wettest Month

BIO14 = Precipitation of Driest Month

BIO15 = Precipitation Seasonality (Coefficient of Variation)

BIO16 = Precipitation of Wettest Quarter

BIO17 = Precipitation of Driest Quarter

BIO18 = Precipitation of Warmest Quarter

BIO19 = Precipitation of Coldest Quarter
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Appendix C

The Table A2 presents the biome migrations areas in km2.

Table A2. Migration matrix and biomes extension gains in km2. The results are the median of the
three regional climate models projections.

EMF SDTF HP P MS PP GC XP YF SW

EMF 506.69 0.59 1.27 0.02 0.93 0.25 0 0.04 1.26 14.85
SDTF 13.44 31 0 0 1.33 0.65 0 0 0.18 0

HP 0.07 0 133.67 3.31 21.29 0 1.26 2.03 2.89 0
P 0 0 2.05 15.74 5.34 0 0.01 0 2.53 0

MS 0.07 5.91 1.07 0.66 116.55 2.05 0 0.06 3.31 0
PP 0.74 6.95 0 0 8.91 74.5 0 0 0 0
GC 0 0 15.24 0.12 0.03 0 16.31 4.57 0 0
XP 0 0 1.77 0 2.49 0.01 0.09 10.07 0 0
YF 30.35 1.46 0.08 0.16 1.58 0 0 0 151.61 0
SW 68.73 0 0 0 0 0 0 0 0 30.61

Appendix D

The Figure A2 presents box plots showing the dispersion among the efficiency indica-
tors, precision, recall, and F1 score.
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